当前位置: 首页>>代码示例>>Python>>正文


Python BayesianModel.check_model方法代码示例

本文整理汇总了Python中pgmpy.models.BayesianModel.check_model方法的典型用法代码示例。如果您正苦于以下问题:Python BayesianModel.check_model方法的具体用法?Python BayesianModel.check_model怎么用?Python BayesianModel.check_model使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pgmpy.models.BayesianModel的用法示例。


在下文中一共展示了BayesianModel.check_model方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: TestBayesianModelCPD

# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import check_model [as 别名]
class TestBayesianModelCPD(unittest.TestCase):
    def setUp(self):
        self.G = BayesianModel([('d', 'g'), ('i', 'g'), ('g', 'l'),
                                ('i', 's')])

    def test_active_trail_nodes(self):
        self.assertEqual(sorted(self.G.active_trail_nodes('d')), ['d', 'g', 'l'])
        self.assertEqual(sorted(self.G.active_trail_nodes('i')), ['g', 'i', 'l', 's'])

    def test_active_trail_nodes_args(self):
        self.assertEqual(sorted(self.G.active_trail_nodes('d', observed='g')), ['d', 'i', 's'])
        self.assertEqual(sorted(self.G.active_trail_nodes('l', observed='g')), ['l'])
        self.assertEqual(sorted(self.G.active_trail_nodes('s', observed=['i', 'l'])), ['s'])
        self.assertEqual(sorted(self.G.active_trail_nodes('s', observed=['d', 'l'])), ['g', 'i', 's'])

    def test_is_active_trail_triplets(self):
        self.assertTrue(self.G.is_active_trail('d', 'l'))
        self.assertTrue(self.G.is_active_trail('g', 's'))
        self.assertFalse(self.G.is_active_trail('d', 'i'))
        self.assertTrue(self.G.is_active_trail('d', 'i', observed='g'))
        self.assertFalse(self.G.is_active_trail('d', 'l', observed='g'))
        self.assertFalse(self.G.is_active_trail('i', 'l', observed='g'))
        self.assertTrue(self.G.is_active_trail('d', 'i', observed='l'))
        self.assertFalse(self.G.is_active_trail('g', 's', observed='i'))

    def test_is_active_trail(self):
        self.assertFalse(self.G.is_active_trail('d', 's'))
        self.assertTrue(self.G.is_active_trail('s', 'l'))
        self.assertTrue(self.G.is_active_trail('d', 's', observed='g'))
        self.assertFalse(self.G.is_active_trail('s', 'l', observed='g'))

    def test_is_active_trail_args(self):
        self.assertFalse(self.G.is_active_trail('s', 'l', 'i'))
        self.assertFalse(self.G.is_active_trail('s', 'l', 'g'))
        self.assertTrue(self.G.is_active_trail('d', 's', 'l'))
        self.assertFalse(self.G.is_active_trail('d', 's', ['i', 'l']))

    def test_get_cpds(self):
        cpd_d = TabularCPD('d', 2, np.random.rand(2, 1))
        cpd_i = TabularCPD('i', 2, np.random.rand(2, 1))
        cpd_g = TabularCPD('g', 2, np.random.rand(2, 4), ['d', 'i'], [2, 2])
        cpd_l = TabularCPD('l', 2, np.random.rand(2, 2), ['g'], 2)
        cpd_s = TabularCPD('s', 2, np.random.rand(2, 2), ['i'], 2)
        self.G.add_cpds(cpd_d, cpd_i, cpd_g, cpd_l, cpd_s)

        self.assertEqual(self.G.get_cpds('d').variable, 'd')

    def test_get_cpds1(self):
        self.model = BayesianModel([('A', 'AB')])
        cpd_a = TabularCPD('A', 2, np.random.rand(2, 1))
        cpd_ab = TabularCPD('AB', 2, np.random.rand(2, 2), evidence=['A'],
                            evidence_card=[2])

        self.model.add_cpds(cpd_a, cpd_ab)
        self.assertEqual(self.model.get_cpds('A').variable, 'A')
        self.assertEqual(self.model.get_cpds('AB').variable, 'AB')

    def test_add_single_cpd(self):
        cpd_s = TabularCPD('s', 2, np.random.rand(2, 2), ['i'], 2)
        self.G.add_cpds(cpd_s)
        self.assertListEqual(self.G.get_cpds(), [cpd_s])

    def test_add_multiple_cpds(self):
        cpd_d = TabularCPD('d', 2, np.random.rand(2, 1))
        cpd_i = TabularCPD('i', 2, np.random.rand(2, 1))
        cpd_g = TabularCPD('g', 2, np.random.rand(2, 4), ['d', 'i'], [2, 2])
        cpd_l = TabularCPD('l', 2, np.random.rand(2, 2), ['g'], 2)
        cpd_s = TabularCPD('s', 2, np.random.rand(2, 2), ['i'], 2)

        self.G.add_cpds(cpd_d, cpd_i, cpd_g, cpd_l, cpd_s)
        self.assertEqual(self.G.get_cpds('d'), cpd_d)
        self.assertEqual(self.G.get_cpds('i'), cpd_i)
        self.assertEqual(self.G.get_cpds('g'), cpd_g)
        self.assertEqual(self.G.get_cpds('l'), cpd_l)
        self.assertEqual(self.G.get_cpds('s'), cpd_s)

    def test_check_model(self):
        cpd_g = TabularCPD('g', 2, 
                            np.array([[0.2, 0.3, 0.4, 0.6],
                                      [0.8, 0.7, 0.6, 0.4]]),
                                                            ['d', 'i'], [2, 2])

        cpd_s = TabularCPD('s', 2, 
                            np.array([[0.2, 0.3],
                                      [0.8, 0.7]]),
                                                ['i'], 2)

        cpd_l = TabularCPD('l', 2, 
                            np.array([[0.2, 0.3],
                                      [0.8, 0.7]]),
                                                ['g'], 2)

        self.G.add_cpds(cpd_g, cpd_s, cpd_l)
        self.assertTrue(self.G.check_model())


    def test_check_model1(self):
        cpd_g = TabularCPD('g', 2, 
                            np.array([[0.2, 0.3],
                                      [0.8, 0.7]]),
#.........这里部分代码省略.........
开发者ID:ankurankan,项目名称:pgmpy,代码行数:103,代码来源:test_BayesianModel.py

示例2: configure

# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import check_model [as 别名]

#.........这里部分代码省略.........
            for k in range(len(modelDict[j]['pickleData']['original'])):
                print modelDict[j]['pickleData']['original'][k]
                if modelDict[j]['pickleData']['original'][k] not in modelDict[selfName]['labels']:
                    modelDict[j]['pickleData']['original'][k] = 'unknown'

        for j in modelList:
            if modelDict[j]['pickleData']['original'] != modelDict[selfName]['actualLabels']:
                failFlag = True
                print 'original classifications of', j, 'are not identical to those of', selfName

        if failFlag:
            return False

        # Update netStructureString to reflect changes in the modelList names
        strSections = netStructureString.split("'")
        for k in range(len(strSections)):
            if len(strSections[k]) > 2 and ',' not in strSections[k]:
                strSections[k] = strSections[k].split(' ')[0]
        netStructureString = "'".join(strSections)
        netStructure = ast.literal_eval(netStructureString)
        # ---------------------------------------------------------------------------------------------------------------
        # iterate through actual labels
        # for each actual label, iterate through models
        # for each model find classification label of this model for current actual label
        # get the index of the current classification and add it to its CPD
        # also calculate which item in the joint CPD needs to be incremented

        for j in range(len(modelDict[selfName]['actualLabels'])):
            currActualLabel = modelDict[selfName]['actualLabels'][j]
            row = modelDict[selfName]['labels'].index(currActualLabel)

            colVar = np.zeros([len(modelList)])
            for k in range(len(modelList)):
                cmod = modelList[k]
                if k != 0:
                    pmod = modelList[k-1]
                    colVar *= len(modelDict[pmod]['labels'])

                colVar[k] = modelDict[cmod]['labels'].index(
                                   modelDict[cmod]['pickleData']['results'][j])
                modelDict[cmod]['CPD'][0, colVar[k]] += 1

            col = sum(colVar)
            modelDict[selfName]['CPD'][row, col] += 1

        # take all CPD's and normalise the matrices
        evidenceCard = copy.deepcopy(modelList)
        for j in modelDict:
            if j == selfName:
                # this is a joint CPD matrix
                # normalise columns to have sum = 1
                modelDict[j]['CPD'] = normalize(modelDict[j]['CPD'], axis=0, norm='l1')
            else:
                # normalise sum of matrix = 1
                modelDict[j]['CPD'] /= np.sum(modelDict[j]['CPD'])
                evidenceCard[evidenceCard.index(j)] = len(modelDict[j]['labels'])
            print modelDict[j]['CPD']

        model = BayesianModel(netStructure)

        # create TabularCPD data structure to nest calculated CPD
        for j in modelDict:
            if j == selfName:
                modelDict[j]['cpdObject'] = TabularCPD(variable=j, variable_card=len(modelDict[j]['labels']),
                                                       values=modelDict[j]['CPD'],
                                                       evidence=modelList,
                                                       evidence_card=evidenceCard)
            else:
                modelDict[j]['cpdObject'] = TabularCPD(variable=j,
                                                       variable_card=len(modelDict[j]['labels']),
                                                       values=modelDict[j]['CPD'])

        # Associating the CPDs with the network
        for j in modelDict:
            model.add_cpds(modelDict[j]['cpdObject'])

        # check_model checks for the network structure and CPDs and verifies that the CPDs are correctly
        # defined and sum to 1.
        if not model.check_model():
            print 'Model check returned unsuccessful'
            return False

        infer = VariableElimination(model)
        confMatrix = np.zeros(len(modelDict[selfName]['labels']))
        # iterate over all original data and perform classifications to calculate if accuracy with PGN has increased
        for j in range(len(modelDict[selfName]['actualLabels'])):
            currEvidenceDict = dict()
            for k in modelList:
                currEvidenceDict[k] = modelDict[k]['labels'].index(modelDict[k]['pickleData']['results'][j])

            q = infer.query([selfName], currEvidenceDict)

            inferenceClass = modelDict[selfName]['labels'][np.argmax(q[selfName].values)]
            actualClass = modelDict[selfName]['actualLabels'][j]
            confMatrix[modelDict[selfName].index(actualClass), modelDict[selfName].index(inferenceClass)] += 1

        print "%Accuracy with PGN"
        dCalc = SAMTesting.calculateData(modelDict[selfName]['actualLabels'], confMatrix)

        return True
开发者ID:robotology,项目名称:wysiwyd,代码行数:104,代码来源:interactionPGNModel.py


注:本文中的pgmpy.models.BayesianModel.check_model方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。