当前位置: 首页>>代码示例>>Python>>正文


Python Classifier.staticClassify方法代码示例

本文整理汇总了Python中Classifier.Classifier.staticClassify方法的典型用法代码示例。如果您正苦于以下问题:Python Classifier.staticClassify方法的具体用法?Python Classifier.staticClassify怎么用?Python Classifier.staticClassify使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Classifier.Classifier的用法示例。


在下文中一共展示了Classifier.staticClassify方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: confirmPush

# 需要导入模块: from Classifier import Classifier [as 别名]
# 或者: from Classifier.Classifier import staticClassify [as 别名]
 def confirmPush(self):
     limbList = []
     for p in self.selection:
         if self.selection[p] == 1:
             limbList.append(p)
     self.pbar.setValue(0)
     homedir = os.getcwd()
     filt = Filter(homedir)
     filt.dataProcess()
     self.pbar.setValue(25)
     select = RandomSelector(homedir)
     select.dataProcess()
     self.pbar.setValue(50)
     st = StaticAnalyzer(homedir,limbList)
     st.dataProcess()
     self.pbar.setValue(75)
     c = Classifier(homedir)
     count,rate,total,result = c.staticClassify()
     self.pbar.setValue(100)
     reply = QtGui.QMessageBox.question(self, 'Static Analysis Result',"Total number is %d"%(total)+"\nCorrect number is %d"%(count)+"\nCorrect rate is %f"%(100*rate)+"%", QtGui.QMessageBox.Yes)
开发者ID:NikoXM,项目名称:KinectGaitRecognition,代码行数:22,代码来源:staticWindow.py

示例2: confirmPush

# 需要导入模块: from Classifier import Classifier [as 别名]
# 或者: from Classifier.Classifier import staticClassify [as 别名]
    def confirmPush(self):
        checked = self.staticRecognition.isChecked() or self.dynamicRecognition.isChecked() or self.fusionRecognition.isChecked()
        if not checked:
            reply = QtGui.QMessageBox.question(self, 'Analysis Result',"Select One", QtGui.QMessageBox.Yes)
            return

        homdir = os.getcwd()
        trainGaitPath = homdir+"\\Dataset\\TrainDataset\\TrainGaitDataset"
        if (os.path.exists(trainGaitPath)):
            shutil.rmtree(trainGaitPath)
            os.mkdir(trainGaitPath)
        else:
            os.mkdir(trainGaitPath)
        filterFilePath = homdir+"\\Dataset\\FilteredGaitDataset"
        files = os.listdir(filterFilePath)
        for f in files:
            fpath = filterFilePath + "\\"+f
            dstGaitPath = trainGaitPath+"\\"+f
            shutil.copytree(fpath,dstGaitPath)

        testGaitPath = homdir+"\\Dataset\\TestDataset\\TestGaitDataset"
        if (os.path.exists(testGaitPath)):
            shutil.rmtree(testGaitPath)
            os.mkdir(testGaitPath)
        else:
            os.mkdir(testGaitPath)
        
        exePath = "C:\Users\Niko\Documents\BodyBasics-D2D\Debug\BodyBasics-D2D "
        homdir = os.getcwd()
        outputFilePath = homdir+"\\test.txt"
        # outputFile = open(outputFilePath,'w')
        # outputFile.close()
        # os.system(exePath+outputFilePath)

        dstOutputPersonPath = homdir+"\\Dataset\\TestDataset\\TestGaitDataset\\Person001"
        os.mkdir(dstOutputPersonPath)
        dstOutputPath = dstOutputPersonPath+"\\1.txt"
        shutil.copy(outputFilePath,dstOutputPath)

        self.pbar.setValue(50)
        if self.staticRecognition.isChecked():
            self.pbar.setValue(75)
            st = StaticAnalyzer(homdir,limbDescriptors)
            st.dataProcess()
            c = Classifier(homdir)
            count,rate,total,result = c.staticClassify()
            self.pbar.setValue(100)
            name = self.findName(result[0])
            reply = QtGui.QMessageBox.question(self, 'Static Analysis Result',"This is "+name, QtGui.QMessageBox.Yes)
            
        elif self.dynamicRecognition.isChecked():
            self.pbar.setValue(75)
            dy = DynamicAnalyzer(homdir,angleDescriptors)
            dy.dataProcess()
            c = Classifier(homdir)
            count,rate,total = c.dynamicClassify()
            self.pbar.setValue(100)
            reply = QtGui.QMessageBox.question(self, 'Dynamic Analysis Result',"Total number is %d"%(total)+"\nCorrect number is %d"%(count)+"\nCorrect rate is %f"%(100*rate)+"%", QtGui.QMessageBox.Yes)
        else:
            self.pbar.setValue(75)
            dy = DynamicAnalyzer(homdir,angleDescriptors)
            dy.dataProcess()
            st = StaticAnalyzer(homdir,limbDescriptors)
            st.dataProcess()
            c = Classifier(homdir)
            count,rate,total = c.fusionClassify()
            self.pbar.setValue(100)
            reply = QtGui.QMessageBox.question(self, 'Fusion Analysis Result',"Total number is %d"%(total)+"\nCorrect number is %d"%(count)+"\nCorrect rate is %f"%(100*rate)+"%", QtGui.QMessageBox.Yes)
开发者ID:NikoXM,项目名称:KinectGaitRecognition,代码行数:70,代码来源:recognitionWindow.py


注:本文中的Classifier.Classifier.staticClassify方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。