当前位置: 首页>>代码示例>>Python>>正文


Python Classifier.predictTarget方法代码示例

本文整理汇总了Python中Classifier.Classifier.predictTarget方法的典型用法代码示例。如果您正苦于以下问题:Python Classifier.predictTarget方法的具体用法?Python Classifier.predictTarget怎么用?Python Classifier.predictTarget使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Classifier.Classifier的用法示例。


在下文中一共展示了Classifier.predictTarget方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from Classifier import Classifier [as 别名]
# 或者: from Classifier.Classifier import predictTarget [as 别名]

#.........这里部分代码省略.........
                lo = 0
            else:
                lo = charEnds[i-1]

            rowColBinList = em.getAveragedEpochs(hi,lo,isiList,maxSets)
            finalDataArray = rowColBinList
            classMarks = self.prepairTargetArray(self.getCharIndexes(self.targetLetters[i]))

            if self.firsttrain == 1:
                self.cl.learn(finalDataArray,classMarks,0)
                self.firsttrain = 0
            else:
                self.cl.learn(finalDataArray,classMarks)

    # Metoda hada cielove znaky a updatuje pouzivatelske rozhranie
    def guessChars(self,subset,files,targetLetter,testProgress,progTestLabel,guessView,guessLab,maxSets):
        aktCharNum = 0
        totalChars = len(sum(targetLetter,[]))

        if self.chanNum != 64:
            files.sort()
            files = self.createTriplets(files)


        for m in range(len(files)):
            # nacitanie a predspracovanie signalu
            signalLoader = SignalLoader(self.chanNum,files[m])
            prpr = Preprocessor(self.chanNum,subset)
            signal, stimCode, phaseInSequence = signalLoader.loadSignal()
            self.signal = prpr.preprocess(240,1E-1,30E0,self.sf,signal,stimCode,phaseInSequence,1)
            self.stimulusCode = prpr.stimulusCode
            self.phaseInSequence = prpr.phaseInSequence
            if (len(targetLetter) > m):
                self.targetLetters = targetLetter[m]
            else:
                self.targetLetters = []
            print "Processing file:",m,"\n"

            # najdenie prechodov medzi znakmi
            charEnds = self.findCharEnds()

            # rozdelenie dat do epoch
            em = EpochManager(self.signal,self.stimulusCode,self.phaseInSequence)
            isiList = em.createEpochs()

            hit = 0
            # hadanie jednotlivych znakov
            for i in range(len(charEnds)):
                testProgress["value"] = aktCharNum
                progTestLabel["text"] = ("Hádam znak: {}/{}").format(aktCharNum+1, totalChars)
                aktCharNum +=1

                hi = charEnds[i]
                if i == 0:
                    lo = 0
                else:
                    lo = charEnds[i-1]

                rowColBinList = em.getAveragedEpochs(hi,lo,isiList,maxSets)
                finalDataArray = self.prepairSignalArray(self.sf.grandAveragingFilter(rowColBinList,subset,1))

                #pomocou klasifikatora
                char = self.cl.predictTarget(finalDataArray,self.cl.reduce(self.sf,self,subset))

                if len(self.targetLetters) > i:
                    if char == self.targetLetters[i]:
                        hit+=1
                        print "Succesfully guessed char:",char,"\n"
                    else:
                        print "Guessed char:",char,"\n"


                if i == 0:
                    text = "(" + char + ","
                elif i == len(charEnds) - 1:
                    text = char + ")"
                else:
                    text = char + ","

                guessView.configure(state='normal')
                guessView.insert(INSERT, text)
                guessView.configure(state='disabled')

            self.rate += (hit)*100/float(totalChars)
            print "\n Success rate= ",self.rate, "\n"
            guessLab["text"]=("Presnosť: {}").format(self.rate)

        return self.rate

    # Pomocna funkcia pre spracovanie csv suborov epoc dat
    def createTriplets(self, epocFiles):
        triplets = []
        for i in range(len(epocFiles)/3):
            triplet = []
            triplet.append(epocFiles[i])
            triplet.append(epocFiles[i+len(epocFiles)/3])
            triplet.append(epocFiles[i+2*len(epocFiles)/3])
            triplets.append(triplet)

        return triplets
开发者ID:BergiSK,项目名称:Bakalarka,代码行数:104,代码来源:Processor.py


注:本文中的Classifier.Classifier.predictTarget方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。