當前位置: 首頁>>代碼示例>>C#>>正文


C# BigInteger.gcd方法代碼示例

本文整理匯總了C#中BigInteger.gcd方法的典型用法代碼示例。如果您正苦於以下問題:C# BigInteger.gcd方法的具體用法?C# BigInteger.gcd怎麽用?C# BigInteger.gcd使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在BigInteger的用法示例。


在下文中一共展示了BigInteger.gcd方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。

示例1: rsa

        public rsa()
        {
            Random rn = new Random();

            p = BigInteger.genPseudoPrime(521, 100, rn);
            q = BigInteger.genPseudoPrime(521, 100, rn);
            n = new BigInteger(p * q);

            BigInteger o = new BigInteger((p - 1) * (q - 1));

            int eb=0;
            do
            {
                //eb = rn.Next(2, o.bitCount());
                //e = BigInteger.genPseudoPrime(eb, 100, rn);
                e = new BigInteger(65537);
            }
            while (e > o || e.gcd(o) != new BigInteger(1));

            d = new BigInteger(e.modInverse(o));
        }
開發者ID:Rotariu-Stefan,項目名稱:INFO-SI,代碼行數:21,代碼來源:rsa.cs

示例2: genCoPrime

        //***********************************************************************
        // Generates a random number with the specified number of bits such
        // that gcd(number, this) = 1
        //***********************************************************************

        public BigInteger genCoPrime(int bits, Random rand)
        {
	        bool done = false;
	        BigInteger result = new BigInteger();

	        while(!done)
	        {
	                result.genRandomBits(bits, rand);
	                //Console.WriteLine(result.ToString(16));

		        // gcd test
		        BigInteger g = result.gcd(this);
			if(g.dataLength == 1 && g.data[0] == 1)
                                done = true;
	        }

	        return result;
        }
開發者ID:AudriusKniuras,項目名稱:ChatClientServer,代碼行數:23,代碼來源:BigInteger.cs

示例3: LucasStrongTestHelper

        private bool LucasStrongTestHelper(BigInteger thisVal)
        {
                // Do the test (selects D based on Selfridge)
                // Let D be the first element of the sequence
                // 5, -7, 9, -11, 13, ... for which J(D,n) = -1
                // Let P = 1, Q = (1-D) / 4

                long D = 5, sign = -1, dCount = 0;
                bool done = false;

                while(!done)
                {
                        int Jresult = BigInteger.Jacobi(D, thisVal);

                        if(Jresult == -1)
                                done = true;    // J(D, this) = 1
                        else
                        {
                                if(Jresult == 0 && Math.Abs(D) < thisVal)       // divisor found
                                        return false;

                                if(dCount == 20)
                                {
                                        // check for square
                                        BigInteger root = thisVal.sqrt();
                                        if(root * root == thisVal)
                                                return false;
                                }

                                //Console.WriteLine(D);
                                D = (Math.Abs(D) + 2) * sign;
                                sign = -sign;
                        }
                        dCount++;
                }

                long Q = (1 - D) >> 2;

                /*
                Console.WriteLine("D = " + D);
                Console.WriteLine("Q = " + Q);
                Console.WriteLine("(n,D) = " + thisVal.gcd(D));
                Console.WriteLine("(n,Q) = " + thisVal.gcd(Q));
                Console.WriteLine("J(D|n) = " + BigInteger.Jacobi(D, thisVal));
                */

                BigInteger p_add1 = thisVal + 1;
                int s = 0;

                for(int index = 0; index < p_add1.dataLength; index++)
                {
                        uint mask = 0x01;

                        for(int i = 0; i < 32; i++)
                        {
                                if((p_add1.data[index] & mask) != 0)
                                {
                                        index = p_add1.dataLength;      // to break the outer loop
                                        break;
                                }
                                mask <<= 1;
                                s++;
                        }
                }

                BigInteger t = p_add1 >> s;

                // calculate constant = b^(2k) / m
                // for Barrett Reduction
                BigInteger constant = new BigInteger();

                int nLen = thisVal.dataLength << 1;
                constant.data[nLen] = 0x00000001;
                constant.dataLength = nLen + 1;

                constant = constant / thisVal;

                BigInteger[] lucas = LucasSequenceHelper(1, Q, t, thisVal, constant, 0);
                bool isPrime = false;

                if((lucas[0].dataLength == 1 && lucas[0].data[0] == 0) ||
                   (lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
                {
                        // u(t) = 0 or V(t) = 0
                        isPrime = true;
                }

                for(int i = 1; i < s; i++)
                {
                        if(!isPrime)
                        {
                                // doubling of index
                                lucas[1] = thisVal.BarrettReduction(lucas[1] * lucas[1], thisVal, constant);
                                lucas[1] = (lucas[1] - (lucas[2] << 1)) % thisVal;

                                //lucas[1] = ((lucas[1] * lucas[1]) - (lucas[2] << 1)) % thisVal;

                                if((lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
                                        isPrime = true;
                        }
//.........這裏部分代碼省略.........
開發者ID:AudriusKniuras,項目名稱:ChatClientServer,代碼行數:101,代碼來源:BigInteger.cs

示例4: SolovayStrassenTest

        //***********************************************************************
        // Probabilistic prime test based on Solovay-Strassen (Euler Criterion)
        //
        // p is probably prime if for any a < p (a is not multiple of p),
        // a^((p-1)/2) mod p = J(a, p)
        //
        // where J is the Jacobi symbol.
        //
        // Otherwise, p is composite.
        //
        // Returns
        // -------
        // True if "this" is a Euler pseudoprime to randomly chosen
        // bases.  The number of chosen bases is given by the "confidence"
        // parameter.
        //
        // False if "this" is definitely NOT prime.
        //
        //***********************************************************************

        public bool SolovayStrassenTest(int confidence)
        {
                BigInteger thisVal;
                if((this.data[maxLength-1] & 0x80000000) != 0)        // negative
                        thisVal = -this;
                else
                        thisVal = this;

                if(thisVal.dataLength == 1)
                {
                        // test small numbers
                        if(thisVal.data[0] == 0 || thisVal.data[0] == 1)
                                return false;
                        else if(thisVal.data[0] == 2 || thisVal.data[0] == 3)
                                return true;
                }

                if((thisVal.data[0] & 0x1) == 0)     // even numbers
                        return false;


	        int bits = thisVal.bitCount();
	        BigInteger a = new BigInteger();
	        BigInteger p_sub1 = thisVal - 1;
	        BigInteger p_sub1_shift = p_sub1 >> 1;

	        Random rand = new Random();

	        for(int round = 0; round < confidence; round++)
	        {
		        bool done = false;

		        while(!done)		// generate a < n
		        {
			        int testBits = 0;

			        // make sure "a" has at least 2 bits
			        while(testBits < 2)
				        testBits = (int)(rand.NextDouble() * bits);

			        a.genRandomBits(testBits, rand);

			        int byteLen = a.dataLength;

                                // make sure "a" is not 0
			        if(byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
				        done = true;
		        }

                        // check whether a factor exists (fix for version 1.03)
		        BigInteger gcdTest = a.gcd(thisVal);
                        if(gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
                                return false;

		        // calculate a^((p-1)/2) mod p

		        BigInteger expResult = a.modPow(p_sub1_shift, thisVal);
		        if(expResult == p_sub1)
		                expResult = -1;

                        // calculate Jacobi symbol
                        BigInteger jacob = Jacobi(a, thisVal);

                        //Console.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10));
                        //Console.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10));

                        // if they are different then it is not prime
                        if(expResult != jacob)
			        return false;
	        }

	        return true;
        }
開發者ID:AudriusKniuras,項目名稱:ChatClientServer,代碼行數:93,代碼來源:BigInteger.cs

示例5: RabinMillerTest

        //***********************************************************************
        // Probabilistic prime test based on Rabin-Miller's
        //
        // for any p > 0 with p - 1 = 2^s * t
        //
        // p is probably prime (strong pseudoprime) if for any a < p,
        // 1) a^t mod p = 1 or
        // 2) a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
        //
        // Otherwise, p is composite.
        //
        // Returns
        // -------
        // True if "this" is a strong pseudoprime to randomly chosen
        // bases.  The number of chosen bases is given by the "confidence"
        // parameter.
        //
        // False if "this" is definitely NOT prime.
        //
        //***********************************************************************

        public bool RabinMillerTest(int confidence)
        {
                BigInteger thisVal;
                if((this.data[maxLength-1] & 0x80000000) != 0)        // negative
                        thisVal = -this;
                else
                        thisVal = this;

                if(thisVal.dataLength == 1)
                {
                        // test small numbers
                        if(thisVal.data[0] == 0 || thisVal.data[0] == 1)
                                return false;
                        else if(thisVal.data[0] == 2 || thisVal.data[0] == 3)
                                return true;
                }

                if((thisVal.data[0] & 0x1) == 0)     // even numbers
                        return false;


                // calculate values of s and t
                BigInteger p_sub1 = thisVal - (new BigInteger(1));
                int s = 0;

                for(int index = 0; index < p_sub1.dataLength; index++)
                {
                        uint mask = 0x01;

                        for(int i = 0; i < 32; i++)
                        {
                                if((p_sub1.data[index] & mask) != 0)
                                {
                                        index = p_sub1.dataLength;      // to break the outer loop
                                        break;
                                }
                                mask <<= 1;
                                s++;
                        }
                }

                BigInteger t = p_sub1 >> s;

	        int bits = thisVal.bitCount();
	        BigInteger a = new BigInteger();
	        Random rand = new Random();

	        for(int round = 0; round < confidence; round++)
	        {
		        bool done = false;

		        while(!done)		// generate a < n
		        {
			        int testBits = 0;

			        // make sure "a" has at least 2 bits
			        while(testBits < 2)
				        testBits = (int)(rand.NextDouble() * bits);

			        a.genRandomBits(testBits, rand);

			        int byteLen = a.dataLength;

                                // make sure "a" is not 0
			        if(byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
				        done = true;
		        }

                        // check whether a factor exists (fix for version 1.03)
		        BigInteger gcdTest = a.gcd(thisVal);
                        if(gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
                                return false;

                        BigInteger b = a.modPow(t, thisVal);

                        /*
                        Console.WriteLine("a = " + a.ToString(10));
                        Console.WriteLine("b = " + b.ToString(10));
                        Console.WriteLine("t = " + t.ToString(10));
//.........這裏部分代碼省略.........
開發者ID:AudriusKniuras,項目名稱:ChatClientServer,代碼行數:101,代碼來源:BigInteger.cs

示例6: FermatLittleTest

        //***********************************************************************
        // Probabilistic prime test based on Fermat's little theorem
        //
        // for any a < p (p does not divide a) if
        //      a^(p-1) mod p != 1 then p is not prime.
        //
        // Otherwise, p is probably prime (pseudoprime to the chosen base).
        //
        // Returns
        // -------
        // True if "this" is a pseudoprime to randomly chosen
        // bases.  The number of chosen bases is given by the "confidence"
        // parameter.
        //
        // False if "this" is definitely NOT prime.
        //
        // Note - this method is fast but fails for Carmichael numbers except
        // when the randomly chosen base is a factor of the number.
        //
        //***********************************************************************

        public bool FermatLittleTest(int confidence)
        {
                BigInteger thisVal;
                if((this.data[maxLength-1] & 0x80000000) != 0)        // negative
                        thisVal = -this;
                else
                        thisVal = this;

                if(thisVal.dataLength == 1)
                {
                        // test small numbers
                        if(thisVal.data[0] == 0 || thisVal.data[0] == 1)
                                return false;
                        else if(thisVal.data[0] == 2 || thisVal.data[0] == 3)
                                return true;
                }

                if((thisVal.data[0] & 0x1) == 0)     // even numbers
                        return false;

	        int bits = thisVal.bitCount();
	        BigInteger a = new BigInteger();
	        BigInteger p_sub1 = thisVal - (new BigInteger(1));
	        Random rand = new Random();

	        for(int round = 0; round < confidence; round++)
	        {
		        bool done = false;

		        while(!done)		// generate a < n
		        {
			        int testBits = 0;

			        // make sure "a" has at least 2 bits
			        while(testBits < 2)
				        testBits = (int)(rand.NextDouble() * bits);

			        a.genRandomBits(testBits, rand);

			        int byteLen = a.dataLength;

                                // make sure "a" is not 0
			        if(byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
                                        done = true;
		        }

                        // check whether a factor exists (fix for version 1.03)
		        BigInteger gcdTest = a.gcd(thisVal);
                        if(gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
                                return false;

		        // calculate a^(p-1) mod p
		        BigInteger expResult = a.modPow(p_sub1, thisVal);

		        int resultLen = expResult.dataLength;

                        // is NOT prime is a^(p-1) mod p != 1

		        if(resultLen > 1 || (resultLen == 1 && expResult.data[0] != 1))
		        {
		                //Console.WriteLine("a = " + a.ToString());
			        return false;
                        }
	        }

	        return true;
        }
開發者ID:AudriusKniuras,項目名稱:ChatClientServer,代碼行數:88,代碼來源:BigInteger.cs


注:本文中的BigInteger.gcd方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。