本文整理匯總了C#中BigInteger.bitCount方法的典型用法代碼示例。如果您正苦於以下問題:C# BigInteger.bitCount方法的具體用法?C# BigInteger.bitCount怎麽用?C# BigInteger.bitCount使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類BigInteger
的用法示例。
在下文中一共展示了BigInteger.bitCount方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: RabinMillerTest
/// <summary>
/// Probabilistic prime test based on Rabin-Miller's test
/// </summary>
/// <param name="bi" type="BigInteger.BigInteger">
/// <para>
/// The number to test.
/// </para>
/// </param>
/// <param name="confidence" type="int">
/// <para>
/// The number of chosen bases. The test has at least a
/// 1/4^confidence chance of falsely returning True.
/// </para>
/// </param>
/// <returns>
/// <para>
/// True if "this" is a strong pseudoprime to randomly chosen bases.
/// </para>
/// <para>
/// False if "this" is definitely NOT prime.
/// </para>
/// </returns>
public static bool RabinMillerTest(BigInteger bi, ConfidenceFactor confidence)
{
int Rounds = GetSPPRounds(bi, confidence);
// calculate values of s and t
BigInteger p_sub1 = bi - 1;
int s = p_sub1.LowestSetBit();
BigInteger t = p_sub1 >> s;
int bits = bi.bitCount();
BigInteger a = null;
RandomNumberGenerator rng = RandomNumberGenerator.Create();
BigInteger.ModulusRing mr = new BigInteger.ModulusRing(bi);
for (int round = 0; round < Rounds; round++)
{
while (true)
{ // generate a < n
a = BigInteger.genRandom(bits, rng);
// make sure "a" is not 0
if (a > 1 && a < bi)
break;
}
if (a.gcd(bi) != 1) return false;
BigInteger b = mr.Pow(a, t);
if (b == 1) continue; // a^t mod p = 1
bool result = false;
for (int j = 0; j < s; j++)
{
if (b == p_sub1)
{ // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
result = true;
break;
}
b = (b * b) % bi;
}
if (result == false)
return false;
}
return true;
}
示例2: GetSPPRounds
private static int GetSPPRounds (BigInteger bi, ConfidenceFactor confidence)
{
int bc = bi.bitCount();
int Rounds;
// Data from HAC, 4.49
if (bc <= 100 ) Rounds = 27;
else if (bc <= 150 ) Rounds = 18;
else if (bc <= 200 ) Rounds = 15;
else if (bc <= 250 ) Rounds = 12;
else if (bc <= 300 ) Rounds = 9;
else if (bc <= 350 ) Rounds = 8;
else if (bc <= 400 ) Rounds = 7;
else if (bc <= 500 ) Rounds = 6;
else if (bc <= 600 ) Rounds = 5;
else if (bc <= 800 ) Rounds = 4;
else if (bc <= 1250) Rounds = 3;
else Rounds = 2;
switch (confidence) {
case ConfidenceFactor.ExtraLow:
Rounds >>= 2;
return Rounds != 0 ? Rounds : 1;
case ConfidenceFactor.Low:
Rounds >>= 1;
return Rounds != 0 ? Rounds : 1;
case ConfidenceFactor.Medium:
return Rounds;
case ConfidenceFactor.High:
return Rounds <<= 1;
case ConfidenceFactor.ExtraHigh:
return Rounds <<= 2;
case ConfidenceFactor.Provable:
throw new Exception ("The Rabin-Miller test can not be executed in a way such that its results are provable");
default:
throw new ArgumentOutOfRangeException ("confidence");
}
}
示例3: LucasSequenceHelper
//***********************************************************************
// Performs the calculation of the kth term in the Lucas Sequence.
// For details of the algorithm, see reference [9].
//
// k must be odd. i.e LSB == 1
//***********************************************************************
private static BigInteger[] LucasSequenceHelper(BigInteger P, BigInteger Q,
BigInteger k, BigInteger n,
BigInteger constant, int s)
{
BigInteger[] result = new BigInteger[3];
if((k.data[0] & 0x00000001) == 0)
throw (new ArgumentException("Argument k must be odd."));
int numbits = k.bitCount();
uint mask = (uint)0x1 << ((numbits & 0x1F) - 1);
// v = v0, v1 = v1, u1 = u1, Q_k = Q^0
BigInteger v = 2 % n, Q_k = 1 % n,
v1 = P % n, u1 = Q_k;
bool flag = true;
for(int i = k.dataLength - 1; i >= 0 ; i--) // iterate on the binary expansion of k
{
//Console.WriteLine("round");
while(mask != 0)
{
if(i == 0 && mask == 0x00000001) // last bit
break;
if((k.data[i] & mask) != 0) // bit is set
{
// index doubling with addition
u1 = (u1 * v1) % n;
v = ((v * v1) - (P * Q_k)) % n;
v1 = n.BarrettReduction(v1 * v1, n, constant);
v1 = (v1 - ((Q_k * Q) << 1)) % n;
if(flag)
flag = false;
else
Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
Q_k = (Q_k * Q) % n;
}
else
{
// index doubling
u1 = ((u1 * v) - Q_k) % n;
v1 = ((v * v1) - (P * Q_k)) % n;
v = n.BarrettReduction(v * v, n, constant);
v = (v - (Q_k << 1)) % n;
if(flag)
{
Q_k = Q % n;
flag = false;
}
else
Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
}
mask >>= 1;
}
mask = 0x80000000;
}
// at this point u1 = u(n+1) and v = v(n)
// since the last bit always 1, we need to transform u1 to u(2n+1) and v to v(2n+1)
u1 = ((u1 * v) - Q_k) % n;
v = ((v * v1) - (P * Q_k)) % n;
if(flag)
flag = false;
else
Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
Q_k = (Q_k * Q) % n;
for(int i = 0; i < s; i++)
{
// index doubling
u1 = (u1 * v) % n;
v = ((v * v) - (Q_k << 1)) % n;
if(flag)
{
Q_k = Q % n;
flag = false;
}
else
Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
}
//.........這裏部分代碼省略.........
示例4: modPow
//***********************************************************************
// Modulo Exponentiation
//***********************************************************************
public BigInteger modPow(BigInteger exp, BigInteger n)
{
if((exp.data[maxLength-1] & 0x80000000) != 0)
throw (new ArithmeticException("Positive exponents only."));
BigInteger resultNum = 1;
BigInteger tempNum;
bool thisNegative = false;
if((this.data[maxLength-1] & 0x80000000) != 0) // negative this
{
tempNum = -this % n;
thisNegative = true;
}
else
tempNum = this % n; // ensures (tempNum * tempNum) < b^(2k)
if((n.data[maxLength-1] & 0x80000000) != 0) // negative n
n = -n;
// calculate constant = b^(2k) / m
BigInteger constant = new BigInteger();
int i = n.dataLength << 1;
constant.data[i] = 0x00000001;
constant.dataLength = i + 1;
constant = constant / n;
int totalBits = exp.bitCount();
int count = 0;
// perform squaring and multiply exponentiation
for(int pos = 0; pos < exp.dataLength; pos++)
{
uint mask = 0x01;
//Console.WriteLine("pos = " + pos);
for(int index = 0; index < 32; index++)
{
if((exp.data[pos] & mask) != 0)
resultNum = BarrettReduction(resultNum * tempNum, n, constant);
mask <<= 1;
tempNum = BarrettReduction(tempNum * tempNum, n, constant);
if(tempNum.dataLength == 1 && tempNum.data[0] == 1)
{
if(thisNegative && (exp.data[0] & 0x1) != 0) //odd exp
return -resultNum;
return resultNum;
}
count++;
if(count == totalBits)
break;
}
}
if(thisNegative && (exp.data[0] & 0x1) != 0) //odd exp
return -resultNum;
return resultNum;
}
示例5: WriteBigIntWithBits
public void WriteBigIntWithBits(BigInteger bi)
{
WriteInt32(bi.bitCount());
Write(bi.getBytes());
}
示例6: PKCS1PadType1
public static BigInteger PKCS1PadType1(BigInteger input, int pad_len) {
int input_byte_length = (input.bitCount() + 7) / 8;
//System.out.println(String.valueOf(pad_len) + ":" + input_byte_length);
byte[] pad = new byte[pad_len - input_byte_length - 3];
for (int i = 0; i < pad.Length; i++) {
pad[i] = (byte)0xff;
}
BigInteger pad_int = new BigInteger(pad);
pad_int = pad_int << ((input_byte_length + 1) * 8);
BigInteger result = new BigInteger(1);
result = result << ((pad_len - 2) * 8);
result = result | pad_int;
result = result | input;
return result;
}
示例7: PKCS1PadType2
public static BigInteger PKCS1PadType2(BigInteger input, int pad_len, Rng rng) {
int input_byte_length = (input.bitCount() + 7) / 8;
//System.out.println(String.valueOf(pad_len) + ":" + input_byte_length);
byte[] pad = new byte[pad_len - input_byte_length - 3];
for (int i = 0; i < pad.Length; i++) {
byte[] b = new byte[1];
rng.GetBytes(b);
while (b[0] == 0)
rng.GetBytes(b); //0ではだめだ
pad[i] = b[0];
}
BigInteger pad_int = new BigInteger(pad);
pad_int = pad_int << ((input_byte_length + 1) * 8);
BigInteger result = new BigInteger(2);
result = result << ((pad_len - 2) * 8);
result = result | pad_int;
result = result | input;
return result;
}
示例8: findRandomStrongPrime
private static BigInteger[] findRandomStrongPrime(uint primeBits, int orderBits, Random random)
{
BigInteger one = new BigInteger(1);
BigInteger u, aux, aux2;
long[] table_q, table_u, prime_table;
PrimeSieve sieve = new PrimeSieve(16000);
uint table_count = sieve.AvailablePrimes() - 1;
int i, j;
bool flag;
BigInteger prime = null, order = null;
order = BigInteger.genPseudoPrime(orderBits, 20, random);
prime_table = new long[table_count];
table_q = new long[table_count];
table_u = new long[table_count];
i = 0;
for(int pN = 2; pN != 0; pN = sieve.getNextPrime(pN), i++) {
prime_table[i] = (long)pN;
}
for(i = 0; i < table_count; i++) {
table_q[i] =
(((order % new BigInteger(prime_table[i])).LongValue()) *
(long)2) % prime_table[i];
}
while(true) {
u = new BigInteger();
u.genRandomBits((int)primeBits, random);
u.setBit(primeBits - 1);
aux = order << 1;
aux2 = u % aux;
u = u - aux2;
u = u + one;
if(u.bitCount() <= (primeBits - 1))
continue;
for(j = 0; j < table_count; j++) {
table_u[j] =
(u % new BigInteger(prime_table[j])).LongValue();
}
aux2 = order << 1;
for(i = 0; i < (1 << 24); i++) {
long cur_p;
long value;
flag = true;
for(j = 1; j < table_count; j++) {
cur_p = prime_table[j];
value = table_u[j];
if(value >= cur_p)
value -= cur_p;
if(value == 0)
flag = false;
table_u[j] = value + table_q[j];
}
if(!flag)
continue;
aux = aux2 * new BigInteger(i);
prime = u + aux;
if(prime.bitCount() > primeBits)
continue;
if(prime.isProbablePrime(20))
break;
}
if(i < (1 << 24))
break;
}
return new BigInteger[] { prime, order };
}
示例9: findRandomGenerator
private static BigInteger findRandomGenerator(BigInteger order, BigInteger modulo, Random random)
{
BigInteger one = new BigInteger(1);
BigInteger aux = modulo - new BigInteger(1);
BigInteger t = aux % order;
BigInteger generator;
if(t.LongValue() != 0) {
return null;
}
t = aux / order;
while(true) {
generator = new BigInteger();
generator.genRandomBits(modulo.bitCount(), random);
generator = generator % modulo;
generator = generator.modPow(t, modulo);
if(generator!=one)
break;
}
aux = generator.modPow(order, modulo);
if(aux!=one) {
return null;
}
return generator;
}
示例10: roll
// TODO redesign keep strategy to allow keeping both highest and lowest
private static BigInteger roll(BigInteger dieType, long dieCount, long keepCount, KeepStrategy keepStrategy)
{
if (dieType <= 1) {
throw new InvalidExpressionException ("invalid die");
}
// if the diecount is negative we will roll with the positive diecount, but negate the end result.
// basically, "-5d6" is treated as "-(5d6)"
bool negative = false;
if (dieCount < 0) {
negative = true;
dieCount = -dieCount;
}
keepCount = Math.Min(keepCount, dieCount);
// roll the dice and keep them in an array
BigInteger[] results = new BigInteger[dieCount];
for (int i = 0; i < dieCount; i++) {
BigInteger num = new BigInteger ();
num.genRandomBits (dieType.bitCount (), RAND);
results [i] = num;
}
// add up the results based on the strategy used
BigInteger result = 0;
if (keepStrategy == KeepStrategy.ALL) {
for (int i = 0; i < dieCount; i++) {
result += results [i];
}
} else { // we are only keeping some, so sort the list
Array.Sort (results);
if (keepStrategy == KeepStrategy.HIGHEST) {
for (long i = dieCount - 1; i >= dieCount - keepCount; i--) {
result += results [i];
}
} else if (keepStrategy == KeepStrategy.LOWEST) {
for (int i = 0; i < keepCount; i++) {
result += results [i];
}
}
}
if (negative) {
result = -result;
}
return result;
}