當前位置: 首頁>>代碼示例>>C#>>正文


C# BigInteger.Subtract方法代碼示例

本文整理匯總了C#中BigInteger.Subtract方法的典型用法代碼示例。如果您正苦於以下問題:C# BigInteger.Subtract方法的具體用法?C# BigInteger.Subtract怎麽用?C# BigInteger.Subtract使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在BigInteger的用法示例。


在下文中一共展示了BigInteger.Subtract方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。

示例1: CreateRandomInRange

		/**
		* Return a random BigInteger not less than 'min' and not greater than 'max'
		* 
		* @param min the least value that may be generated
		* @param max the greatest value that may be generated
		* @param random the source of randomness
		* @return a random BigInteger value in the range [min,max]
		*/
		public static BigInteger CreateRandomInRange(
			BigInteger		min,
			BigInteger		max,
			// TODO Should have been just Random class
			SecureRandom	random)
		{
			int cmp = min.CompareTo(max);
			if (cmp >= 0)
			{
				if (cmp > 0)
					throw new ArgumentException("'min' may not be greater than 'max'");

				return min;
			}

			if (min.BitLength > max.BitLength / 2)
			{
				return CreateRandomInRange(BigInteger.Zero, max.Subtract(min), random).Add(min);
			}

			for (int i = 0; i < MaxIterations; ++i)
			{
				BigInteger x = new BigInteger(max.BitLength, random);
				if (x.CompareTo(min) >= 0 && x.CompareTo(max) <= 0)
				{
					return x;
				}
			}

			// fall back to a faster (restricted) method
			return new BigInteger(max.Subtract(min).BitLength - 1, random).Add(min);
		}
開發者ID:Xanagandr,項目名稱:DisaOpenSource,代碼行數:40,代碼來源:BigIntegers.cs

示例2: RsaSecretBcpgKey

		public RsaSecretBcpgKey(
			BigInteger d,
			BigInteger p,
			BigInteger q)
		{
			// PGP requires (p < q)
			int cmp = p.CompareTo(q);
			if (cmp >= 0)
			{
				if (cmp == 0)
					throw new ArgumentException("p and q cannot be equal");

				BigInteger tmp = p;
				p = q;
				q = tmp;
			}

			this.d = new MPInteger(d);
			this.p = new MPInteger(p);
			this.q = new MPInteger(q);
			this.u = new MPInteger(p.ModInverse(q));

			this.expP = d.Remainder(p.Subtract(BigInteger.One));
			this.expQ = d.Remainder(q.Subtract(BigInteger.One));
			this.crt = q.ModInverse(p);
		}
開發者ID:Xanagandr,項目名稱:DisaOpenSource,代碼行數:26,代碼來源:RsaSecretBcpgKey.cs

示例3: WindowNaf

		/**
		* Computes the Window NAF (non-adjacent Form) of an integer.
		* @param width The width <code>w</code> of the Window NAF. The width is
		* defined as the minimal number <code>w</code>, such that for any
		* <code>w</code> consecutive digits in the resulting representation, at
		* most one is non-zero.
		* @param k The integer of which the Window NAF is computed.
		* @return The Window NAF of the given width, such that the following holds:
		* <code>k = &#8722;<sub>i=0</sub><sup>l-1</sup> k<sub>i</sub>2<sup>i</sup>
		* </code>, where the <code>k<sub>i</sub></code> denote the elements of the
		* returned <code>sbyte[]</code>.
		*/
		public sbyte[] WindowNaf(sbyte width, BigInteger k)
		{
			// The window NAF is at most 1 element longer than the binary
			// representation of the integer k. sbyte can be used instead of short or
			// int unless the window width is larger than 8. For larger width use
			// short or int. However, a width of more than 8 is not efficient for
			// m = log2(q) smaller than 2305 Bits. Note: Values for m larger than
			// 1000 Bits are currently not used in practice.
			sbyte[] wnaf = new sbyte[k.BitLength + 1];

			// 2^width as short and BigInteger
			short pow2wB = (short)(1 << width);
			BigInteger pow2wBI = BigInteger.ValueOf(pow2wB);

			int i = 0;

			// The actual length of the WNAF
			int length = 0;

			// while k >= 1
			while (k.SignValue > 0)
			{
				// if k is odd
				if (k.TestBit(0))
				{
					// k Mod 2^width
					BigInteger remainder = k.Mod(pow2wBI);

					// if remainder > 2^(width - 1) - 1
					if (remainder.TestBit(width - 1))
					{
						wnaf[i] = (sbyte)(remainder.IntValue - pow2wB);
					}
					else
					{
						wnaf[i] = (sbyte)remainder.IntValue;
					}
					// wnaf[i] is now in [-2^(width-1), 2^(width-1)-1]

					k = k.Subtract(BigInteger.ValueOf(wnaf[i]));
					length = i;
				}
				else
				{
					wnaf[i] = 0;
				}

				// k = k/2
				k = k.ShiftRight(1);
				i++;
			}

			length++;

			// Reduce the WNAF array to its actual length
			sbyte[] wnafShort = new sbyte[length];
			Array.Copy(wnaf, 0, wnafShort, 0, length);
			return wnafShort;
		}
開發者ID:ktw,項目名稱:OutlookPrivacyPlugin,代碼行數:71,代碼來源:WNafMultiplier.cs

示例4: GeneratePrivateValue

		public static BigInteger GeneratePrivateValue(IDigest digest, BigInteger N, BigInteger g, SecureRandom random)
	    {
			int minBits = System.Math.Min(256, N.BitLength / 2);
	        BigInteger min = BigInteger.One.ShiftLeft(minBits - 1);
	        BigInteger max = N.Subtract(BigInteger.One);

	        return BigIntegers.CreateRandomInRange(min, max, random);
	    }
開發者ID:Xanagandr,項目名稱:DisaOpenSource,代碼行數:8,代碼來源:SRP6Utilities.cs

示例5: GeneratePrivateKey

		private static BigInteger GeneratePrivateKey(BigInteger q, SecureRandom random)
		{
			// TODO Prefer this method? (change test cases that used fixed random)
			// B.1.1 Key Pair Generation Using Extra Random Bits
//	        BigInteger c = new BigInteger(q.BitLength + 64, random);
//	        return c.Mod(q.Subtract(BigInteger.One)).Add(BigInteger.One);

			// B.1.2 Key Pair Generation by Testing Candidates
			return BigIntegers.CreateRandomInRange(BigInteger.One, q.Subtract(BigInteger.One), random);
		}
開發者ID:Xanagandr,項目名稱:DisaOpenSource,代碼行數:10,代碼來源:DsaKeyPairGenerator.cs

示例6: DecomposeScalar

        public virtual BigInteger[] DecomposeScalar(BigInteger k)
        {
            int bits = m_parameters.Bits;
            BigInteger b1 = CalculateB(k, m_parameters.G1, bits);
            BigInteger b2 = CalculateB(k, m_parameters.G2, bits);

            BigInteger[] v1 = m_parameters.V1, v2 = m_parameters.V2;
            BigInteger a = k.Subtract((b1.Multiply(v1[0])).Add(b2.Multiply(v2[0])));
            BigInteger b = (b1.Multiply(v1[1])).Add(b2.Multiply(v2[1])).Negate();

            return new BigInteger[]{ a, b };
        }
開發者ID:ALange,項目名稱:OutlookPrivacyPlugin,代碼行數:12,代碼來源:GlvTypeBEndomorphism.cs

示例7: DHParameters

		public DHParameters(
			BigInteger				p,
			BigInteger				g,
			BigInteger				q,
			int						m,
			int						l,
			BigInteger				j,
			DHValidationParameters	validation)
		{
			if (p == null)
				throw new ArgumentNullException("p");
			if (g == null)
				throw new ArgumentNullException("g");
			if (!p.TestBit(0))
				throw new ArgumentException("field must be an odd prime", "p");
			if (g.CompareTo(BigInteger.Two) < 0
				|| g.CompareTo(p.Subtract(BigInteger.Two)) > 0)
				throw new ArgumentException("generator must in the range [2, p - 2]", "g");
			if (q != null && q.BitLength >= p.BitLength)
				throw new ArgumentException("q too big to be a factor of (p-1)", "q");
			if (m >= p.BitLength)
				throw new ArgumentException("m value must be < bitlength of p", "m");
			if (l != 0)
			{ 
	            if (l >= p.BitLength)
                	throw new ArgumentException("when l value specified, it must be less than bitlength(p)", "l");
				if (l < m)
					throw new ArgumentException("when l value specified, it may not be less than m value", "l");
			}
			if (j != null && j.CompareTo(BigInteger.Two) < 0)
				throw new ArgumentException("subgroup factor must be >= 2", "j");

			// TODO If q, j both provided, validate p = jq + 1 ?

			this.p = p;
			this.g = g;
			this.q = q;
			this.m = m;
			this.l = l;
			this.j = j;
			this.validation = validation;
        }
開發者ID:Xanagandr,項目名稱:DisaOpenSource,代碼行數:42,代碼來源:DHParameters.cs

示例8: ReduceInto

 /// <summary>
 /// Reduces an integer into a given interval
 /// </summary>
 /// 
 /// <param name="X">The integer</param>
 /// <param name="Begin">Left bound of the interval</param>
 /// <param name="End">Right bound of the interval</param>
 /// 
 /// <returns>Returns <c>N</c> reduced into <c>[Begin,End]</c></returns>
 public static BigInteger ReduceInto(BigInteger X, BigInteger Begin, BigInteger End)
 {
     return X.Subtract(Begin).Mod(End.Subtract(Begin)).Add(Begin);
 }
開發者ID:Steppenwolfe65,項目名稱:Rainbow-NET,代碼行數:13,代碼來源:BigMath.cs

示例9: ModSubtract

 protected virtual BigInteger ModSubtract(BigInteger x1, BigInteger x2)
 {
     BigInteger x3 = x1.Subtract(x2);
     if (x3.SignValue < 0)
     {
         x3 = x3.Add(q);
     }
     return x3;
 }
開發者ID:ubberkid,項目名稱:PeerATT,代碼行數:9,代碼來源:ECFieldElement.cs

示例10: ModReduce

 protected virtual BigInteger ModReduce(BigInteger x)
 {
     if (r == null)
     {
         x = x.Mod(q);
     }
     else
     {
         bool negative = x.SignValue < 0;
         if (negative)
         {
             x = x.Abs();
         }
         int qLen = q.BitLength;
         if (r.SignValue > 0)
         {
             BigInteger qMod = BigInteger.One.ShiftLeft(qLen);
             bool rIsOne = r.Equals(BigInteger.One);
             while (x.BitLength > (qLen + 1))
             {
                 BigInteger u = x.ShiftRight(qLen);
                 BigInteger v = x.Remainder(qMod);
                 if (!rIsOne)
                 {
                     u = u.Multiply(r);
                 }
                 x = u.Add(v);
             }
         }
         else
         {
             int d = ((qLen - 1) & 31) + 1;
             BigInteger mu = r.Negate();
             BigInteger u = mu.Multiply(x.ShiftRight(qLen - d));
             BigInteger quot = u.ShiftRight(qLen + d);
             BigInteger v = quot.Multiply(q);
             BigInteger bk1 = BigInteger.One.ShiftLeft(qLen + d);
             v = v.Remainder(bk1);
             x = x.Remainder(bk1);
             x = x.Subtract(v);
             if (x.SignValue < 0)
             {
                 x = x.Add(bk1);
             }
         }
         while (x.CompareTo(q) >= 0)
         {
             x = x.Subtract(q);
         }
         if (negative && x.SignValue != 0)
         {
             x = q.Subtract(x);
         }
     }
     return x;
 }
開發者ID:ubberkid,項目名稱:PeerATT,代碼行數:56,代碼來源:ECFieldElement.cs

示例11: Calculate

 public override Number Calculate(BigInteger bigint1, BigInteger bigint2)
 {
     if (bigint1 == null || bigint2 == null)
     {
         return 0;
     }
     return bigint1.Subtract(bigint2);
 }
開發者ID:tupunco,項目名稱:Tup.Cobar4Net,代碼行數:8,代碼來源:ArithmeticSubtractExpression.cs

示例12: Encode

        /// <summary>
        /// Encode a number between 0 and (n|t) (binomial coefficient) into a binary vector of length n with weight t. 
        /// <para>The number is given as a byte array. Only the first s bits are used, where s = floor[log(n|t)].</para>
        /// </summary>
        /// 
        /// <param name="N">The "n" integer</param>
        /// <param name="T">The "t" integer</param>
        /// <param name="M">The message as a byte array</param>
        /// 
        /// <returns>The encoded message as GF2Vector</returns>
        public static GF2Vector Encode(int N, int T, byte[] M)
        {
            if (N < T)
                throw new ArgumentException("n < t");

            // compute the binomial c = (n|t)
            BigInteger c = BigMath.Binomial(N, T);
            // get the number encoded in m
            BigInteger i = new BigInteger(1, M);
            // compare
            if (i.CompareTo(c) >= 0)
                throw new ArgumentException("Encoded number too large.");

            GF2Vector result = new GF2Vector(N);
            int nn = N;
            int tt = T;

            for (int j = 0; j < N; j++)
            {
                c = c.Multiply(BigInteger.ValueOf(nn - tt)).Divide(BigInteger.ValueOf(nn));
                nn--;

                if (c.CompareTo(i) <= 0)
                {
                    result.SetBit(j);
                    i = i.Subtract(c);
                    tt--;

                    if (nn == tt)
                        c = ONE;
                    else
                        c = (c.Multiply(BigInteger.ValueOf(tt + 1))).Divide(BigInteger.ValueOf(nn - tt));
                }
            }

            return result;
        }
開發者ID:jesusgarza,項目名稱:McEliece-Sharp,代碼行數:47,代碼來源:CCA2Conversions.cs

示例13: PartModReduction

		/**
		* Partial modular reduction modulo
		* <code>(&#964;<sup>m</sup> - 1)/(&#964; - 1)</code>.
		* @param k The integer to be reduced.
		* @param m The bitlength of the underlying finite field.
		* @param a The parameter <code>a</code> of the elliptic curve.
		* @param s The auxiliary values <code>s<sub>0</sub></code> and
		* <code>s<sub>1</sub></code>.
		* @param mu The parameter &#956; of the elliptic curve.
		* @param c The precision (number of bits of accuracy) of the partial
		* modular reduction.
		* @return <code>&#961; := k partmod (&#964;<sup>m</sup> - 1)/(&#964; - 1)</code>
		*/
		public static ZTauElement PartModReduction(BigInteger k, int m, sbyte a,
			BigInteger[] s, sbyte mu, sbyte c)
		{
			// d0 = s[0] + mu*s[1]; mu is either 1 or -1
			BigInteger d0;
			if (mu == 1)
			{
				d0 = s[0].Add(s[1]);
			}
			else
			{
				d0 = s[0].Subtract(s[1]);
			}

			BigInteger[] v = GetLucas(mu, m, true);
			BigInteger vm = v[1];

			SimpleBigDecimal lambda0 = ApproximateDivisionByN(
				k, s[0], vm, a, m, c);
	        
			SimpleBigDecimal lambda1 = ApproximateDivisionByN(
				k, s[1], vm, a, m, c);

			ZTauElement q = Round(lambda0, lambda1, mu);

			// r0 = n - d0*q0 - 2*s1*q1
			BigInteger r0 = k.Subtract(d0.Multiply(q.u)).Subtract(
				BigInteger.ValueOf(2).Multiply(s[1]).Multiply(q.v));

			// r1 = s1*q0 - s0*q1
			BigInteger r1 = s[1].Multiply(q.u).Subtract(s[0].Multiply(q.v));
	        
			return new ZTauElement(r0, r1);
		}
開發者ID:Xanagandr,項目名稱:DisaOpenSource,代碼行數:47,代碼來源:Tnaf.cs

示例14: DblToRgbPrecise


//.........這裏部分代碼省略.........
                if (c2Num > 1) {
                    biHi.ShiftLeft(c2Num - 1);
                }
                biDen.ShiftLeft(c2Den);
                Debug.Assert(0 == (biDen[biDen.Length - 1] & 0xF0000000));
                Debug.Assert(0 != (biDen[biDen.Length - 1] & 0x08000000));

                // Get biHiLo and handle the power of 2 case where biHi needs to be doubled.
                if (fPow2) {
                    biHiLo = biLo;
                    biHiLo.InitFromBigint(biHi);
                    biHi.ShiftLeft(1);
                } else {
                    biHiLo = biHi;
                }

                for (ib = 0; ; ) {
                    bT = (byte)biNum.DivRem(biDen);
                    if (0 == ib && 0 == bT) {
                        // Our estimate of wExp10 was too big. Oh well.
                        wExp10--;
                        goto LSkip;
                    }

                    // w1 = sign(biNum - biHiLo).
                    w1 = biNum.CompareTo(biHiLo);

                    // w2 = sign(biNum + biHi - biDen).
                    if (biDen.CompareTo(biHi) < 0) {
                        w2 = 1;
                    } else {
                        // 
                        biT.InitFromBigint(biDen);
                        biT.Subtract(biHi);
                        w2 = biNum.CompareTo(biT);
                    }

                    // if (biNum + biHi == biDen && even)
                    if (0 == w2 && 0 == (dblLo & 1)) {
                        // Rounding up this digit produces exactly (biNum + biHi) which
                        // StrToDbl will round down to dbl.
                        if (bT == 9) {
                            goto LRoundUp9;
                        }
                        if (w1 > 0) {
                            bT++;
                        }
                        mantissa[ib++] = bT;
                        break;
                    }

                    // if (biNum < biHiLo || biNum == biHiLo && even)
                    if (w1 < 0 || 0 == w1 && 0 == (dblLo & 1)) {
                        // if (biNum + biHi > biDen)
                        if (w2 > 0) {
                            // Decide whether to round up.
                            biNum.ShiftLeft(1);
                            w2 = biNum.CompareTo(biDen);
                            if ((w2 > 0 || 0 == w2 && (0 != (bT & 1))) && bT++ == 9) {
                                goto LRoundUp9;
                            }
                        }
                        mantissa[ib++] = bT;
                        break;
                    }
開發者ID:uQr,項目名稱:referencesource,代碼行數:66,代碼來源:XPathConvert.cs

示例15: TestMultiply

        public void TestMultiply()
        {
            BigInteger one = BigInteger.One;

            Assert.AreEqual(one, one.Negate().Multiply(one.Negate()));

            for (int i = 0; i < 100; ++i)
            {
                int aLen = 64 + Rnd.Next(64);
                int bLen = 64 + Rnd.Next(64);

                BigInteger a = new BigInteger(aLen, Rnd).SetBit(aLen);
                BigInteger b = new BigInteger(bLen, Rnd).SetBit(bLen);
                var c = new BigInteger(32, Rnd);

                BigInteger ab = a.Multiply(b);
                BigInteger bc = b.Multiply(c);

                Assert.AreEqual(ab.Add(bc), a.Add(c).Multiply(b));
                Assert.AreEqual(ab.Subtract(bc), a.Subtract(c).Multiply(b));
            }

            // Special tests for power of two since uses different code path internally
            for (int i = 0; i < 100; ++i)
            {
                int shift = Rnd.Next(64);
                BigInteger a = one.ShiftLeft(shift);
                var b = new BigInteger(64 + Rnd.Next(64), Rnd);
                BigInteger bShift = b.ShiftLeft(shift);

                Assert.AreEqual(bShift, a.Multiply(b));
                Assert.AreEqual(bShift.Negate(), a.Multiply(b.Negate()));
                Assert.AreEqual(bShift.Negate(), a.Negate().Multiply(b));
                Assert.AreEqual(bShift, a.Negate().Multiply(b.Negate()));

                Assert.AreEqual(bShift, b.Multiply(a));
                Assert.AreEqual(bShift.Negate(), b.Multiply(a.Negate()));
                Assert.AreEqual(bShift.Negate(), b.Negate().Multiply(a));
                Assert.AreEqual(bShift, b.Negate().Multiply(a.Negate()));
            }
        }
開發者ID:ChemicalRocketeer,項目名稱:BigMath,代碼行數:41,代碼來源:BigIntegerTest.cs


注:本文中的BigInteger.Subtract方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。