本文整理匯總了C#中BigInteger.TestBit方法的典型用法代碼示例。如果您正苦於以下問題:C# BigInteger.TestBit方法的具體用法?C# BigInteger.TestBit怎麽用?C# BigInteger.TestBit使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類BigInteger
的用法示例。
在下文中一共展示了BigInteger.TestBit方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: ImplShamirsTrick
private static ECPoint ImplShamirsTrick(ECPoint P, BigInteger k,
ECPoint Q, BigInteger l)
{
int m = System.Math.Max(k.BitLength, l.BitLength);
ECPoint Z = P.Add(Q);
ECPoint R = P.Curve.Infinity;
for (int i = m - 1; i >= 0; --i)
{
R = R.Twice();
if (k.TestBit(i))
{
if (l.TestBit(i))
{
R = R.Add(Z);
}
else
{
R = R.Add(P);
}
}
else
{
if (l.TestBit(i))
{
R = R.Add(Q);
}
}
}
return R;
}
示例2: WindowNaf
/**
* Computes the Window NAF (non-adjacent Form) of an integer.
* @param width The width <code>w</code> of the Window NAF. The width is
* defined as the minimal number <code>w</code>, such that for any
* <code>w</code> consecutive digits in the resulting representation, at
* most one is non-zero.
* @param k The integer of which the Window NAF is computed.
* @return The Window NAF of the given width, such that the following holds:
* <code>k = −<sub>i=0</sub><sup>l-1</sup> k<sub>i</sub>2<sup>i</sup>
* </code>, where the <code>k<sub>i</sub></code> denote the elements of the
* returned <code>sbyte[]</code>.
*/
public sbyte[] WindowNaf(sbyte width, BigInteger k)
{
// The window NAF is at most 1 element longer than the binary
// representation of the integer k. sbyte can be used instead of short or
// int unless the window width is larger than 8. For larger width use
// short or int. However, a width of more than 8 is not efficient for
// m = log2(q) smaller than 2305 Bits. Note: Values for m larger than
// 1000 Bits are currently not used in practice.
sbyte[] wnaf = new sbyte[k.BitLength + 1];
// 2^width as short and BigInteger
short pow2wB = (short)(1 << width);
BigInteger pow2wBI = BigInteger.ValueOf(pow2wB);
int i = 0;
// The actual length of the WNAF
int length = 0;
// while k >= 1
while (k.SignValue > 0)
{
// if k is odd
if (k.TestBit(0))
{
// k Mod 2^width
BigInteger remainder = k.Mod(pow2wBI);
// if remainder > 2^(width - 1) - 1
if (remainder.TestBit(width - 1))
{
wnaf[i] = (sbyte)(remainder.IntValue - pow2wB);
}
else
{
wnaf[i] = (sbyte)remainder.IntValue;
}
// wnaf[i] is now in [-2^(width-1), 2^(width-1)-1]
k = k.Subtract(BigInteger.ValueOf(wnaf[i]));
length = i;
}
else
{
wnaf[i] = 0;
}
// k = k/2
k = k.ShiftRight(1);
i++;
}
length++;
// Reduce the WNAF array to its actual length
sbyte[] wnafShort = new sbyte[length];
Array.Copy(wnaf, 0, wnafShort, 0, length);
return wnafShort;
}
示例3: GenerateCompactWindowNaf
public static int[] GenerateCompactWindowNaf(int width, BigInteger k)
{
if (width == 2)
{
return GenerateCompactNaf(k);
}
if (width < 2 || width > 16)
throw new ArgumentException("must be in the range [2, 16]", "width");
if ((k.BitLength >> 16) != 0)
throw new ArgumentException("must have bitlength < 2^16", "k");
if (k.SignValue == 0)
return EMPTY_INTS;
int[] wnaf = new int[k.BitLength / width + 1];
// 2^width and a mask and sign bit set accordingly
int pow2 = 1 << width;
int mask = pow2 - 1;
int sign = pow2 >> 1;
bool carry = false;
int length = 0, pos = 0;
while (pos <= k.BitLength)
{
if (k.TestBit(pos) == carry)
{
++pos;
continue;
}
k = k.ShiftRight(pos);
int digit = k.IntValue & mask;
if (carry)
{
++digit;
}
carry = (digit & sign) != 0;
if (carry)
{
digit -= pow2;
}
int zeroes = length > 0 ? pos - 1 : pos;
wnaf[length++] = (digit << 16) | zeroes;
pos = width;
}
// Reduce the WNAF array to its actual length
if (wnaf.Length > length)
{
wnaf = Trim(wnaf, length);
}
return wnaf;
}
示例4: MultiplyPositive
/**
* Simple shift-and-add multiplication. Serves as reference implementation
* to verify (possibly faster) implementations in
* {@link org.bouncycastle.math.ec.ECPoint ECPoint}.
*
* @param p The point to multiply.
* @param k The factor by which to multiply.
* @return The result of the point multiplication <code>k * p</code>.
*/
protected override ECPoint MultiplyPositive(ECPoint p, BigInteger k)
{
ECPoint q = p.Curve.Infinity;
int t = k.BitLength;
if (t > 0)
{
if (k.TestBit(0))
{
q = p;
}
for (int i = 1; i < t; i++)
{
p = p.Twice();
if (k.TestBit(i))
{
q = q.Add(p);
}
}
}
return q;
}
示例5: Multiply
/**
* Simple shift-and-add multiplication. Serves as reference implementation
* to verify (possibly faster) implementations in
* {@link org.bouncycastle.math.ec.ECPoint ECPoint}.
*
* @param p The point to multiply.
* @param k The factor by which to multiply.
* @return The result of the point multiplication <code>k * p</code>.
*/
public ECPoint Multiply(ECPoint p, BigInteger k, PreCompInfo preCompInfo)
{
ECPoint q = p.Curve.Infinity;
int t = k.BitLength;
for (int i = 0; i < t; i++)
{
if (k.TestBit(i))
{
q = q.Add(p);
}
p = p.Twice();
}
return q;
}
示例6: MultiplyPositive
/**
* Joye's double-add algorithm.
*/
protected override ECPoint MultiplyPositive(ECPoint p, BigInteger k)
{
ECPoint[] R = new ECPoint[]{ p.Curve.Infinity, p };
int n = k.BitLength;
for (int i = 0; i < n; ++i)
{
int b = k.TestBit(i) ? 1 : 0;
int bp = 1 - b;
R[bp] = R[bp].TwicePlus(R[b]);
}
return R[0];
}
示例7: MultiplyPositive
/**
* Montgomery ladder.
*/
protected override ECPoint MultiplyPositive(ECPoint p, BigInteger k)
{
ECPoint[] R = new ECPoint[]{ p.Curve.Infinity, p };
int n = k.BitLength;
int i = n;
while (--i >= 0)
{
int b = k.TestBit(i) ? 1 : 0;
int bp = 1 - b;
R[bp] = R[bp].Add(R[b]);
R[b] = R[b].Twice();
}
return R[0];
}
示例8: MultiplyPositive
protected override ECPoint MultiplyPositive(ECPoint p, BigInteger k)
{
ECCurve c = p.Curve;
int size = FixedPointUtilities.GetCombSize(c);
if (k.BitLength > size)
{
/*
* TODO The comb works best when the scalars are less than the (possibly unknown) order.
* Still, if we want to handle larger scalars, we could allow customization of the comb
* size, or alternatively we could deal with the 'extra' bits either by running the comb
* multiple times as necessary, or by using an alternative multiplier as prelude.
*/
throw new InvalidOperationException("fixed-point comb doesn't support scalars larger than the curve order");
}
int minWidth = GetWidthForCombSize(size);
FixedPointPreCompInfo info = FixedPointUtilities.Precompute(p, minWidth);
ECPoint[] lookupTable = info.PreComp;
int width = info.Width;
int d = (size + width - 1) / width;
ECPoint R = c.Infinity;
int top = d * width - 1;
for (int i = 0; i < d; ++i)
{
int index = 0;
for (int j = top - i; j >= 0; j -= d)
{
index <<= 1;
if (k.TestBit(j))
{
index |= 1;
}
}
R = R.TwicePlus(lookupTable[index]);
}
return R;
}
示例9: MultiplyPositive
/**
* 'Zeroless' Signed Digit Left-to-Right.
*/
protected override ECPoint MultiplyPositive(ECPoint p, BigInteger k)
{
ECPoint addP = p.Normalize(), subP = addP.Negate();
ECPoint R0 = addP;
int n = k.BitLength;
int s = k.GetLowestSetBit();
int i = n;
while (--i > s)
{
R0 = R0.TwicePlus(k.TestBit(i) ? addP : subP);
}
R0 = R0.TimesPow2(s);
return R0;
}
示例10: DHParameters
public DHParameters(
BigInteger p,
BigInteger g,
BigInteger q,
int m,
int l,
BigInteger j,
DHValidationParameters validation)
{
if (p == null)
throw new ArgumentNullException("p");
if (g == null)
throw new ArgumentNullException("g");
if (!p.TestBit(0))
throw new ArgumentException("field must be an odd prime", "p");
if (g.CompareTo(BigInteger.Two) < 0
|| g.CompareTo(p.Subtract(BigInteger.Two)) > 0)
throw new ArgumentException("generator must in the range [2, p - 2]", "g");
if (q != null && q.BitLength >= p.BitLength)
throw new ArgumentException("q too big to be a factor of (p-1)", "q");
if (m >= p.BitLength)
throw new ArgumentException("m value must be < bitlength of p", "m");
if (l != 0)
{
if (l >= p.BitLength)
throw new ArgumentException("when l value specified, it must be less than bitlength(p)", "l");
if (l < m)
throw new ArgumentException("when l value specified, it may not be less than m value", "l");
}
if (j != null && j.CompareTo(BigInteger.Two) < 0)
throw new ArgumentException("subgroup factor must be >= 2", "j");
// TODO If q, j both provided, validate p = jq + 1 ?
this.p = p;
this.g = g;
this.q = q;
this.m = m;
this.l = l;
this.j = j;
this.validation = validation;
}
示例11: MultiplyPositive
/**
* 'Zeroless' Signed Digit Right-to-Left.
*/
protected override ECPoint MultiplyPositive(ECPoint p, BigInteger k)
{
ECPoint R0 = p.Curve.Infinity, R1 = p;
int n = k.BitLength;
int s = k.GetLowestSetBit();
R1 = R1.TimesPow2(s);
int i = s;
while (++i < n)
{
R0 = R0.Add(k.TestBit(i) ? R1 : R1.Negate());
R1 = R1.Twice();
}
R0 = R0.Add(R1);
return R0;
}
示例12: GenerateCompactNaf
public static int[] GenerateCompactNaf(BigInteger k)
{
if ((k.BitLength >> 16) != 0)
throw new ArgumentException("must have bitlength < 2^16", "k");
if (k.SignValue == 0)
return EMPTY_INTS;
BigInteger _3k = k.ShiftLeft(1).Add(k);
int bits = _3k.BitLength;
int[] naf = new int[bits >> 1];
BigInteger diff = _3k.Xor(k);
int highBit = bits - 1, length = 0, zeroes = 0;
for (int i = 1; i < highBit; ++i)
{
if (!diff.TestBit(i))
{
++zeroes;
continue;
}
int digit = k.TestBit(i) ? -1 : 1;
naf[length++] = (digit << 16) | zeroes;
zeroes = 1;
++i;
}
naf[length++] = (1 << 16) | zeroes;
if (naf.Length > length)
{
naf = Trim(naf, length);
}
return naf;
}
示例13: ModHalf
protected virtual BigInteger ModHalf(BigInteger x)
{
if (x.TestBit(0))
{
x = q.Add(x);
}
return x.ShiftRight(1);
}
示例14: LucasSequence
private BigInteger[] LucasSequence(
BigInteger P,
BigInteger Q,
BigInteger k)
{
// TODO Research and apply "common-multiplicand multiplication here"
int n = k.BitLength;
int s = k.GetLowestSetBit();
Debug.Assert(k.TestBit(s));
BigInteger Uh = BigInteger.One;
BigInteger Vl = BigInteger.Two;
BigInteger Vh = P;
BigInteger Ql = BigInteger.One;
BigInteger Qh = BigInteger.One;
for (int j = n - 1; j >= s + 1; --j)
{
Ql = ModMult(Ql, Qh);
if (k.TestBit(j))
{
Qh = ModMult(Ql, Q);
Uh = ModMult(Uh, Vh);
Vl = ModReduce(Vh.Multiply(Vl).Subtract(P.Multiply(Ql)));
Vh = ModReduce(Vh.Multiply(Vh).Subtract(Qh.ShiftLeft(1)));
}
else
{
Qh = Ql;
Uh = ModReduce(Uh.Multiply(Vl).Subtract(Ql));
Vh = ModReduce(Vh.Multiply(Vl).Subtract(P.Multiply(Ql)));
Vl = ModReduce(Vl.Multiply(Vl).Subtract(Ql.ShiftLeft(1)));
}
}
Ql = ModMult(Ql, Qh);
Qh = ModMult(Ql, Q);
Uh = ModReduce(Uh.Multiply(Vl).Subtract(Ql));
Vl = ModReduce(Vh.Multiply(Vl).Subtract(P.Multiply(Ql)));
Ql = ModMult(Ql, Qh);
for (int j = 1; j <= s; ++j)
{
Uh = ModMult(Uh, Vl);
Vl = ModReduce(Vl.Multiply(Vl).Subtract(Ql.ShiftLeft(1)));
Ql = ModMult(Ql, Ql);
}
return new BigInteger[] { Uh, Vl };
}
示例15: TestShiftRight
public void TestShiftRight()
{
for (int i = 0; i < 10; ++i)
{
int shift = Rnd.Next(128);
BigInteger a = new BigInteger(256 + i, Rnd).SetBit(256 + i);
BigInteger b = a.ShiftRight(shift);
Assert.AreEqual(a.BitLength - shift, b.BitLength);
for (int j = 0; j < b.BitLength; ++j)
{
Assert.AreEqual(a.TestBit(j + shift), b.TestBit(j));
}
}
}