本文整理匯總了C#中BigInteger.Equals方法的典型用法代碼示例。如果您正苦於以下問題:C# BigInteger.Equals方法的具體用法?C# BigInteger.Equals怎麽用?C# BigInteger.Equals使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類BigInteger
的用法示例。
在下文中一共展示了BigInteger.Equals方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: Calculate
/// <summary>
/// Runs the EEA on two BigIntegers
/// </summary>
/// <param name="A">Quotient A</param>
/// <param name="B">Quotient B</param>
/// <returns>Return a BigIntEuclidean object that contains the result in the variables X, Y, and GCD</returns>
///
/// <remarks>
/// Implemented from pseudocode on <a href="http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm"/>Wikipedia
/// </remarks>
public static BigIntEuclidean Calculate(BigInteger A, BigInteger B)
{
BigInteger x = BigInteger.Zero;
BigInteger lastX = BigInteger.One;
BigInteger y = BigInteger.One;
BigInteger lastY = BigInteger.Zero;
while (!B.Equals(BigInteger.Zero))
{
BigInteger[] quotientAndRemainder = A.DivideAndRemainder(B);
BigInteger quotient = quotientAndRemainder[0];
BigInteger temp = A;
A = B;
B = quotientAndRemainder[1];
temp = x;
x = lastX.Subtract(quotient.Multiply(x));
lastX = temp;
temp = y;
y = lastY.Subtract(quotient.Multiply(y));
lastY = temp;
}
BigIntEuclidean result = new BigIntEuclidean();
result.X = lastX;
result.Y = lastY;
result.GCD = A;
return result;
}
示例2: AndNot
/** @see BigInteger#andNot(BigInteger) */
public static BigInteger AndNot(BigInteger val, BigInteger that)
{
if (that.Sign == 0) {
return val;
}
if (val.Sign == 0) {
return BigInteger.Zero;
}
if (val.Equals(BigInteger.MinusOne)) {
return that.Not();
}
if (that.Equals(BigInteger.MinusOne)) {
return BigInteger.Zero;
}
//if val == that, return 0
if (val.Sign > 0) {
if (that.Sign > 0) {
return AndNotPositive(val, that);
} else {
return AndNotPositiveNegative(val, that);
}
} else {
if (that.Sign > 0) {
return AndNotNegativePositive(val, that);
} else {
return AndNotNegative(val, that);
}
}
}
示例3: And
/** @see BigInteger#and(BigInteger) */
public static BigInteger And(BigInteger val, BigInteger that)
{
if (that.Sign == 0 || val.Sign == 0) {
return BigInteger.Zero;
}
if (that.Equals(BigInteger.MinusOne)) {
return val;
}
if (val.Equals(BigInteger.MinusOne)) {
return that;
}
if (val.Sign > 0) {
if (that.Sign > 0) {
return AndPositive(val, that);
} else {
return AndDiffSigns(val, that);
}
} else {
if (that.Sign > 0) {
return AndDiffSigns(that, val);
} else if (val.numberLength > that.numberLength) {
return AndNegative(val, that);
} else {
return AndNegative(that, val);
}
}
}
示例4: ValidatePublicValue
public static BigInteger ValidatePublicValue(BigInteger N, BigInteger val)
{
val = val.Mod(N);
// Check that val % N != 0
if (val.Equals(BigInteger.Zero))
throw new CryptoException("Invalid public value: 0");
return val;
}
示例5: Not
/// <summary>
/// Returns a new BigInteger whose value is ~Value.
/// <para>The result of this operation is <c>-this-1</c>.</para>
/// </summary>
///
/// <param name="Value">Value to be Not'ed</param>
///
/// <returns>Returns <c>~Value</c></returns>
internal static BigInteger Not(BigInteger Value)
{
if (Value._sign == 0)
return BigInteger.MinusOne;
if (Value.Equals(BigInteger.MinusOne))
return BigInteger.Zero;
int[] resDigits = new int[Value._numberLength + 1];
int i;
if (Value._sign > 0)
{
// ~val = -val + 1
if (Value._digits[Value._numberLength - 1] != -1)
{
for (i = 0; Value._digits[i] == -1; i++)
{
;
}
}
else
{
for (i = 0; (i < Value._numberLength) && (Value._digits[i] == -1); i++)
{
;
}
if (i == Value._numberLength)
{
resDigits[i] = 1;
return new BigInteger(-Value._sign, i + 1, resDigits);
}
}
// Here a carry 1 was generated
}
else
{
// ~val = -val - 1
for (i = 0; Value._digits[i] == 0; i++)
resDigits[i] = -1;
}
// Now, the carry/borrow can be absorbed
resDigits[i] = Value._digits[i] + Value._sign;
// Copying the remaining unchanged digit
for (i++; i < Value._numberLength; i++)
resDigits[i] = Value._digits[i];
return new BigInteger(-Value._sign, i, resDigits);
}
示例6: VerifyCtorInt32
private static bool VerifyCtorInt32(Int32 value)
{
bool ret = true;
BigInteger bigInteger;
bigInteger = new BigInteger(value);
if (!bigInteger.Equals(value))
{
Console.WriteLine("Expected BigInteger {0} to be equal to Int32 {1}", bigInteger, value);
ret = false;
}
if (String.CompareOrdinal(value.ToString(), bigInteger.ToString()) != 0)
{
Console.WriteLine("Int32.ToString() and BigInteger.ToString() on {0} and {1} should be equal", value, bigInteger);
ret = false;
}
if (value != (Int32)bigInteger)
{
Console.WriteLine("Expected BigInteger {0} to be equal to Int32 {1}", bigInteger, value);
ret = false;
}
if (value != Int32.MaxValue)
{
if ((Int32)(value + 1) != (Int32)(bigInteger + 1))
{
Console.WriteLine("Adding 1 to both {0} and {1} should remain equal", value, bigInteger);
ret = false;
}
}
if (value != Int32.MinValue)
{
if ((Int32)(value - 1) != (Int32)(bigInteger - 1))
{
Console.WriteLine("Subtracting 1 from both {0} and {1} should remain equal", value, bigInteger);
ret = false;
}
}
Assert.True(VerifyBigintegerUsingIdentities(bigInteger, 0 == value), " Verification Failed");
return ret;
}
示例7: GenerateBlindingFactor
/**
* Generate a suitable blind factor for the public key the generator was initialised with.
*
* @return a random blind factor
*/
public BigInteger GenerateBlindingFactor()
{
if (key == null)
throw new InvalidOperationException("generator not initialised");
BigInteger m = key.Modulus;
int length = m.BitLength - 1; // must be less than m.BitLength
BigInteger factor;
BigInteger gcd;
do
{
factor = new BigInteger(length, random);
gcd = factor.Gcd(m);
}
while (factor.Sign == 0 || factor.Equals(BigInteger.One) || !gcd.Equals(BigInteger.One));
return factor;
}
示例8: Equals_BI_on_same_is_true
public void Equals_BI_on_same_is_true()
{
BigInteger i = new BigInteger(1, 0x1, 0x2, 0x3);
BigInteger j = new BigInteger(1, 0x1, 0x2, 0x3);
Expect(i.Equals(j));
}
示例9: BIDivide
public static object BIDivide(BigInteger n, BigInteger d)
{
if (d.Equals(BigInteger.ZERO))
throw new ArithmeticException("Divide by zero");
//BigInteger gcd = n.gcd(d);
BigInteger gcd = n.Gcd(d);
if (gcd.Equals(BigInteger.ZERO))
return 0;
//n = n.divide(gcd);
//d = d.divide(gcd);
n = n / gcd;
d = d / gcd;
if (d.Equals(BigInteger.ONE))
return reduce(n);
//return new Ratio((d.signum() < 0 ? n.negate() : n),
// (d.signum() < 0 ? d.negate() : d));
return new Ratio((d.Signum < 0 ? -n : n), d.Abs());
}
示例10: Equals_BI_on_different_is_false
public void Equals_BI_on_different_is_false()
{
BigInteger i = new BigInteger(1, 0x1, 0x2, 0x3);
BigInteger j = new BigInteger(1, 0x1, 0x2, 0x4);
Expect(i.Equals(j),False);
}
示例11: Equals_BI_on_null_is_false
public void Equals_BI_on_null_is_false()
{
BigInteger i = new BigInteger(1, 0x1, 0x2, 0x3);
Expect(i.Equals(null), False);
}
示例12: NextProbablePrime
/// <summary>
/// Compute the next probable prime greater than <c>N</c> with the specified certainty
/// </summary>
///
/// <param name="X">An integer number</param>
/// <param name="Certainty">The certainty that the generated number is prime</param>
///
/// <returns>Returns the next prime greater than <c>N</c></returns>
public static BigInteger NextProbablePrime(BigInteger X, int Certainty)
{
if (X.Signum() < 0 || X.Signum() == 0 || X.Equals(ONE))
return TWO;
BigInteger result = X.Add(ONE);
// Ensure an odd number
if (!result.TestBit(0))
result = result.Add(ONE);
while (true)
{
// Do cheap "pre-test" if applicable
if (result.BitLength > 6)
{
long r = result.Remainder(BigInteger.ValueOf(SMALL_PRIME_PRODUCT)).ToInt64();
if ((r % 3 == 0) || (r % 5 == 0) || (r % 7 == 0) ||
(r % 11 == 0) || (r % 13 == 0) || (r % 17 == 0) ||
(r % 19 == 0) || (r % 23 == 0) || (r % 29 == 0) ||
(r % 31 == 0) || (r % 37 == 0) || (r % 41 == 0))
{
result = result.Add(TWO);
continue; // Candidate is composite; try another
}
}
// All candidates of bitLength 2 and 3 are prime by this point
if (result.BitLength < 4)
return result;
// The expensive test
if (result.IsProbablePrime(Certainty))
return result;
result = result.Add(TWO);
}
}
示例13: EqualsTest3
public void EqualsTest3()
{
BigInteger target = new BigInteger(); // TODO: Initialize to an appropriate value
long other = 0; // TODO: Initialize to an appropriate value
bool expected = false; // TODO: Initialize to an appropriate value
bool actual;
actual = target.Equals(other);
Assert.AreEqual(expected, actual);
Assert.Inconclusive("Verify the correctness of this test method.");
}
示例14: VerifyComparison
private static void VerifyComparison(BigInteger x, bool IsXNegative, BigInteger y, bool IsYNegative, int expectedResult)
{
bool expectedEquals = 0 == expectedResult;
bool expectedLessThan = expectedResult < 0;
bool expectedGreaterThan = expectedResult > 0;
if (IsXNegative == true)
{
x = x * -1;
}
if (IsYNegative == true)
{
y = y * -1;
}
Assert.Equal(expectedEquals, x == y);
Assert.Equal(expectedEquals, y == x);
Assert.Equal(!expectedEquals, x != y);
Assert.Equal(!expectedEquals, y != x);
Assert.Equal(expectedEquals, x.Equals(y));
Assert.Equal(expectedEquals, y.Equals(x));
Assert.Equal(expectedEquals, x.Equals((Object)y));
Assert.Equal(expectedEquals, y.Equals((Object)x));
VerifyCompareResult(expectedResult, x.CompareTo(y), "x.CompareTo(y)");
VerifyCompareResult(-expectedResult, y.CompareTo(x), "y.CompareTo(x)");
if (expectedEquals)
{
Assert.Equal(x.GetHashCode(), y.GetHashCode());
Assert.Equal(x.ToString(), y.ToString());
}
Assert.Equal(x.GetHashCode(), x.GetHashCode());
Assert.Equal(y.GetHashCode(), y.GetHashCode());
Assert.Equal(expectedLessThan, x < y);
Assert.Equal(expectedGreaterThan, y < x);
Assert.Equal(expectedGreaterThan, x > y);
Assert.Equal(expectedLessThan, y > x);
Assert.Equal(expectedLessThan || expectedEquals, x <= y);
Assert.Equal(expectedGreaterThan || expectedEquals, y <= x);
Assert.Equal(expectedGreaterThan || expectedEquals, x >= y);
Assert.Equal(expectedLessThan || expectedEquals, y >= x);
}
示例15: Ressol
/// <summary>
/// Computes the square root of a BigInteger modulo a prime employing the Shanks-Tonelli algorithm
/// </summary>
///
/// <param name="X">The value out of which we extract the square root</param>
/// <param name="P">The prime modulus that determines the underlying field</param>
///
/// <returns>Returns a number <c>B</c> such that B^2 = A (mod P) if <c>A</c> is a quadratic residue modulo <c>P</c></returns>
public static BigInteger Ressol(BigInteger X, BigInteger P)
{
BigInteger v = null;
if (X.CompareTo(ZERO) < 0)
X = X.Add(P);
if (X.Equals(ZERO))
return ZERO;
if (P.Equals(TWO))
return X;
// p = 3 mod 4
if (P.TestBit(0) && P.TestBit(1))
{
if (Jacobi(X, P) == 1)
{
// a quadr. residue mod p
v = P.Add(ONE); // v = p+1
v = v.ShiftRight(2); // v = v/4
return X.ModPow(v, P); // return a^v mod p
}
throw new ArgumentException("No quadratic residue: " + X + ", " + P);
}
long t = 0;
// initialization
// compute k and s, where p = 2^s (2k+1) +1
BigInteger k = P.Subtract(ONE); // k = p-1
long s = 0;
while (!k.TestBit(0))
{ // while k is even
s++; // s = s+1
k = k.ShiftRight(1); // k = k/2
}
k = k.Subtract(ONE); // k = k - 1
k = k.ShiftRight(1); // k = k/2
// initial values
BigInteger r = X.ModPow(k, P); // r = a^k mod p
BigInteger n = r.Multiply(r).Remainder(P); // n = r^2 % p
n = n.Multiply(X).Remainder(P); // n = n * a % p
r = r.Multiply(X).Remainder(P); // r = r * a %p
if (n.Equals(ONE))
{
return r;
}
// non-quadratic residue
BigInteger z = TWO; // z = 2
while (Jacobi(z, P) == 1)
{
// while z quadratic residue
z = z.Add(ONE); // z = z + 1
}
v = k;
v = v.Multiply(TWO); // v = 2k
v = v.Add(ONE); // v = 2k + 1
BigInteger c = z.ModPow(v, P); // c = z^v mod p
// iteration
while (n.CompareTo(ONE) == 1)
{ // n > 1
k = n; // k = n
t = s; // t = s
s = 0;
while (!k.Equals(ONE))
{ // k != 1
k = k.Multiply(k).Mod(P); // k = k^2 % p
s++; // s = s + 1
}
t -= s; // t = t - s
if (t == 0)
{
throw new ArgumentException("No quadratic residue: " + X + ", " + P);
}
v = ONE;
for (long i = 0; i < t - 1; i++)
{
v = v.ShiftLeft(1); // v = 1 * 2^(t - 1)
}
c = c.ModPow(v, P); // c = c^v mod p
r = r.Multiply(c).Remainder(P); // r = r * c % p
c = c.Multiply(c).Remainder(P); // c = c^2 % p
//.........這裏部分代碼省略.........