本文整理匯總了C#中BigInteger.Add方法的典型用法代碼示例。如果您正苦於以下問題:C# BigInteger.Add方法的具體用法?C# BigInteger.Add怎麽用?C# BigInteger.Add使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類BigInteger
的用法示例。
在下文中一共展示了BigInteger.Add方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: Add_neg_pos_same_mag
public void Add_neg_pos_same_mag()
{
BigInteger x = new BigInteger(-1, new uint[] { 0x3 });
BigInteger y = new BigInteger(1, new uint[] { 0x3 });
BigInteger z = x.Add(y);
Expect(z.IsZero);
}
示例2: Add_neg_pos_second_larger_mag
public void Add_neg_pos_second_larger_mag()
{
BigInteger x = new BigInteger(-1, new uint[] { 0x3 });
BigInteger y = new BigInteger(1, new uint[] { 0x5 });
BigInteger z = x.Add(y);
Expect(SameValue(z, 1, new uint[] { 0x2 }));
}
示例3: Add_neg_same_length_some_carry
public void Add_neg_same_length_some_carry()
{
BigInteger x = new BigInteger(-1, new uint[] { 0x12345678, 0x12345678, 0xFFFFFFFF });
BigInteger y = new BigInteger(-1, new uint[] { 0x23456789, 0x13243546, 0x11111111 });
BigInteger z = x.Add(y);
Expect(SameValue(z, -1, new uint[] { 0x3579BE01, 0x25588BBF, 0x11111110 }));
}
示例4: Ressol
/// <summary>
/// Computes the square root of a BigInteger modulo a prime employing the Shanks-Tonelli algorithm
/// </summary>
///
/// <param name="X">The value out of which we extract the square root</param>
/// <param name="P">The prime modulus that determines the underlying field</param>
///
/// <returns>Returns a number <c>B</c> such that B^2 = A (mod P) if <c>A</c> is a quadratic residue modulo <c>P</c></returns>
public static BigInteger Ressol(BigInteger X, BigInteger P)
{
BigInteger v = null;
if (X.CompareTo(ZERO) < 0)
X = X.Add(P);
if (X.Equals(ZERO))
return ZERO;
if (P.Equals(TWO))
return X;
// p = 3 mod 4
if (P.TestBit(0) && P.TestBit(1))
{
if (Jacobi(X, P) == 1)
{
// a quadr. residue mod p
v = P.Add(ONE); // v = p+1
v = v.ShiftRight(2); // v = v/4
return X.ModPow(v, P); // return a^v mod p
}
throw new ArgumentException("No quadratic residue: " + X + ", " + P);
}
long t = 0;
// initialization
// compute k and s, where p = 2^s (2k+1) +1
BigInteger k = P.Subtract(ONE); // k = p-1
long s = 0;
while (!k.TestBit(0))
{ // while k is even
s++; // s = s+1
k = k.ShiftRight(1); // k = k/2
}
k = k.Subtract(ONE); // k = k - 1
k = k.ShiftRight(1); // k = k/2
// initial values
BigInteger r = X.ModPow(k, P); // r = a^k mod p
BigInteger n = r.Multiply(r).Remainder(P); // n = r^2 % p
n = n.Multiply(X).Remainder(P); // n = n * a % p
r = r.Multiply(X).Remainder(P); // r = r * a %p
if (n.Equals(ONE))
{
return r;
}
// non-quadratic residue
BigInteger z = TWO; // z = 2
while (Jacobi(z, P) == 1)
{
// while z quadratic residue
z = z.Add(ONE); // z = z + 1
}
v = k;
v = v.Multiply(TWO); // v = 2k
v = v.Add(ONE); // v = 2k + 1
BigInteger c = z.ModPow(v, P); // c = z^v mod p
// iteration
while (n.CompareTo(ONE) == 1)
{ // n > 1
k = n; // k = n
t = s; // t = s
s = 0;
while (!k.Equals(ONE))
{ // k != 1
k = k.Multiply(k).Mod(P); // k = k^2 % p
s++; // s = s + 1
}
t -= s; // t = t - s
if (t == 0)
{
throw new ArgumentException("No quadratic residue: " + X + ", " + P);
}
v = ONE;
for (long i = 0; i < t - 1; i++)
{
v = v.ShiftLeft(1); // v = 1 * 2^(t - 1)
}
c = c.ModPow(v, P); // c = c^v mod p
r = r.Multiply(c).Remainder(P); // r = r * c % p
c = c.Multiply(c).Remainder(P); // c = c^2 % p
//.........這裏部分代碼省略.........
示例5: ModReduce
protected virtual BigInteger ModReduce(BigInteger x)
{
if (r == null)
{
x = x.Mod(q);
}
else
{
bool negative = x.SignValue < 0;
if (negative)
{
x = x.Abs();
}
int qLen = q.BitLength;
if (r.SignValue > 0)
{
BigInteger qMod = BigInteger.One.ShiftLeft(qLen);
bool rIsOne = r.Equals(BigInteger.One);
while (x.BitLength > (qLen + 1))
{
BigInteger u = x.ShiftRight(qLen);
BigInteger v = x.Remainder(qMod);
if (!rIsOne)
{
u = u.Multiply(r);
}
x = u.Add(v);
}
}
else
{
int d = ((qLen - 1) & 31) + 1;
BigInteger mu = r.Negate();
BigInteger u = mu.Multiply(x.ShiftRight(qLen - d));
BigInteger quot = u.ShiftRight(qLen + d);
BigInteger v = quot.Multiply(q);
BigInteger bk1 = BigInteger.One.ShiftLeft(qLen + d);
v = v.Remainder(bk1);
x = x.Remainder(bk1);
x = x.Subtract(v);
if (x.SignValue < 0)
{
x = x.Add(bk1);
}
}
while (x.CompareTo(q) >= 0)
{
x = x.Subtract(q);
}
if (negative && x.SignValue != 0)
{
x = q.Subtract(x);
}
}
return x;
}
示例6: ModAdd
protected virtual BigInteger ModAdd(BigInteger x1, BigInteger x2)
{
BigInteger x3 = x1.Add(x2);
if (x3.CompareTo(q) >= 0)
{
x3 = x3.Subtract(q);
}
return x3;
}
示例7: ModInverseLorencz
/**
*
* Based on "New Algorithm for Classical Modular Inverse" Róbert Lórencz.
* LNCS 2523 (2002)
*
* @return a^(-1) mod m
*/
private static BigInteger ModInverseLorencz(BigInteger a, BigInteger modulo)
{
// PRE: a is coprime with modulo, a < modulo
int max = System.Math.Max(a.numberLength, modulo.numberLength);
int[] uDigits = new int[max + 1]; // enough place to make all the inplace operation
int[] vDigits = new int[max + 1];
Array.Copy(modulo.Digits, 0, uDigits, 0, modulo.numberLength);
Array.Copy(a.Digits, 0, vDigits, 0, a.numberLength);
BigInteger u = new BigInteger(modulo.Sign,
modulo.numberLength,
uDigits);
BigInteger v = new BigInteger(a.Sign, a.numberLength, vDigits);
BigInteger r = new BigInteger(0, 1, new int[max + 1]); // BigInteger.ZERO;
BigInteger s = new BigInteger(1, 1, new int[max + 1]);
s.Digits[0] = 1;
// r == 0 && s == 1, but with enough place
int coefU = 0, coefV = 0;
int n = modulo.BitLength;
int k;
while (!IsPowerOfTwo(u, coefU) && !IsPowerOfTwo(v, coefV)) {
// modification of original algorithm: I calculate how many times the algorithm will enter in the same branch of if
k = HowManyIterations(u, n);
if (k != 0) {
BitLevel.InplaceShiftLeft(u, k);
if (coefU >= coefV)
BitLevel.InplaceShiftLeft(r, k);
else {
BitLevel.InplaceShiftRight(s, System.Math.Min(coefV - coefU, k));
if (k - (coefV - coefU) > 0)
BitLevel.InplaceShiftLeft(r, k - coefV + coefU);
}
coefU += k;
}
k = HowManyIterations(v, n);
if (k != 0) {
BitLevel.InplaceShiftLeft(v, k);
if (coefV >= coefU)
BitLevel.InplaceShiftLeft(s, k);
else {
BitLevel.InplaceShiftRight(r, System.Math.Min(coefU - coefV, k));
if (k - (coefU - coefV) > 0)
BitLevel.InplaceShiftLeft(s, k - coefU + coefV);
}
coefV += k;
}
if (u.Sign == v.Sign) {
if (coefU <= coefV) {
Elementary.completeInPlaceSubtract(u, v);
Elementary.completeInPlaceSubtract(r, s);
} else {
Elementary.completeInPlaceSubtract(v, u);
Elementary.completeInPlaceSubtract(s, r);
}
} else {
if (coefU <= coefV) {
Elementary.completeInPlaceAdd(u, v);
Elementary.completeInPlaceAdd(r, s);
} else {
Elementary.completeInPlaceAdd(v, u);
Elementary.completeInPlaceAdd(s, r);
}
}
if (v.Sign == 0 || u.Sign == 0) {
// math.19: BigInteger not invertible
throw new ArithmeticException(Messages.math19);
}
}
if (IsPowerOfTwo(v, coefV)) {
r = s;
if (v.Sign != u.Sign)
u = u.Negate();
}
if (u.TestBit(n)) {
if (r.Sign < 0)
r = r.Negate();
else
r = modulo.Subtract(r);
}
if (r.Sign < 0)
r = r.Add(modulo);
return r;
}
示例8: TestModPow
public void TestModPow()
{
try
{
Two.ModPow(One, Zero);
Assert.Fail("expected ArithmeticException");
}
catch (ArithmeticException)
{
}
Assert.AreEqual(Zero, Zero.ModPow(Zero, One));
Assert.AreEqual(One, Zero.ModPow(Zero, Two));
Assert.AreEqual(Zero, Two.ModPow(One, One));
Assert.AreEqual(One, Two.ModPow(Zero, Two));
for (int i = 0; i < 10; ++i)
{
BigInteger m = BigInteger.ProbablePrime(10 + i*3, Rnd);
var x = new BigInteger(m.BitLength - 1, Rnd);
Assert.AreEqual(x, x.ModPow(m, m));
if (x.Sign != 0)
{
Assert.AreEqual(Zero, Zero.ModPow(x, m));
Assert.AreEqual(One, x.ModPow(m.Subtract(One), m));
}
var y = new BigInteger(m.BitLength - 1, Rnd);
var n = new BigInteger(m.BitLength - 1, Rnd);
BigInteger n3 = n.ModPow(Three, m);
BigInteger resX = n.ModPow(x, m);
BigInteger resY = n.ModPow(y, m);
BigInteger res = resX.Multiply(resY).Mod(m);
BigInteger res3 = res.ModPow(Three, m);
Assert.AreEqual(res3, n3.ModPow(x.Add(y), m));
BigInteger a = x.Add(One); // Make sure it's not zero
BigInteger b = y.Add(One); // Make sure it's not zero
Assert.AreEqual(a.ModPow(b, m).ModInverse(m), a.ModPow(b.Negate(), m));
}
}
示例9: Add_pos_first_longer_one_carry
public void Add_pos_first_longer_one_carry()
{
BigInteger x = new BigInteger(1, new uint[] { 0x12345678, 0x12345678, 0xFFFFFFFF, 0x22222222 });
BigInteger y = new BigInteger(1, new uint[] { 0x11111111, 0x11111111 });
BigInteger z = x.Add(y);
Expect(SameValue(z, 1, new uint[] { 0x12345678, 0x12345679, 0x11111110, 0x33333333 }));
}
示例10: Add_pos_first_longer_carry_extend
public void Add_pos_first_longer_carry_extend()
{
BigInteger x = new BigInteger(1, new uint[] { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x22222222 });
BigInteger y = new BigInteger(1, new uint[] { 0x11111111, 0x11111111 });
BigInteger z = x.Add(y);
Expect(SameValue(z, 1, new uint[] { 0x00000001, 0x00000000, 0x00000000, 0x11111110, 0x33333333 }));
}
示例11: Divide
/// <summary>
/// Divides each coefficient by a <c>BigInteger</c> and rounds the result to the nearest whole number.
/// <para>Does not return a new polynomial but modifies this polynomial.</para>
/// </summary>
///
/// <param name="Divisor">The divisor</param>
public void Divide(BigInteger Divisor)
{
BigInteger d = Divisor.Add(BigInteger.One.ShiftRight(1)); // d = ceil(divisor/2)
for (int i = 0; i < Coeffs.Length; i++)
{
Coeffs[i] = Coeffs[i].Signum() > 0 ? Coeffs[i].Add(d) : Coeffs[i].Add(d.Negate());
Coeffs[i] = Coeffs[i].Divide(Divisor);
}
}
示例12: GenerateSafePrimes
/*
* Finds a pair of prime BigInteger's {p, q: p = 2q + 1}
*
* (see: Handbook of Applied Cryptography 4.86)
*/
internal static BigInteger[] GenerateSafePrimes(int size, int certainty, SecureRandom random)
{
BigInteger p, q;
int qLength = size - 1;
if (size <= 32)
{
for (;;)
{
q = new BigInteger(qLength, 2, random);
p = q.ShiftLeft(1).Add(BigInteger.One);
if (p.IsProbablePrime(certainty)
&& (certainty <= 2 || q.IsProbablePrime(certainty)))
break;
}
}
else
{
// Note: Modified from Java version for speed
for (;;)
{
q = new BigInteger(qLength, 0, random);
retry:
for (int i = 0; i < primeLists.Length; ++i)
{
int test = q.Remainder(PrimeProducts[i]).IntValue;
if (i == 0)
{
int rem3 = test % 3;
if (rem3 != 2)
{
int diff = 2 * rem3 + 2;
q = q.Add(BigInteger.ValueOf(diff));
test = (test + diff) % primeProducts[i];
}
}
int[] primeList = primeLists[i];
for (int j = 0; j < primeList.Length; ++j)
{
int prime = primeList[j];
int qRem = test % prime;
if (qRem == 0 || qRem == (prime >> 1))
{
q = q.Add(Six);
goto retry;
}
}
}
if (q.BitLength != qLength)
continue;
if (!q.RabinMillerTest(2, random))
continue;
p = q.ShiftLeft(1).Add(BigInteger.One);
if (p.RabinMillerTest(certainty, random)
&& (certainty <= 2 || q.RabinMillerTest(certainty - 2, random)))
break;
}
}
return new BigInteger[] { p, q };
}
示例13: TestModPow
public void TestModPow()
{
try
{
two.ModPow(one, zero);
Assert.Fail("expected ArithmeticException");
}
catch (ArithmeticException) {}
Assert.AreEqual(zero, zero.ModPow(zero, one));
Assert.AreEqual(one, zero.ModPow(zero, two));
Assert.AreEqual(zero, two.ModPow(one, one));
Assert.AreEqual(one, two.ModPow(zero, two));
for (int i = 0; i < 10; ++i)
{
IBigInteger m = BigInteger.ProbablePrime(10 + i * 3, _random);
IBigInteger x = new BigInteger(m.BitLength - 1, _random);
Assert.AreEqual(x, x.ModPow(m, m));
if (x.SignValue != 0)
{
Assert.AreEqual(zero, zero.ModPow(x, m));
Assert.AreEqual(one, x.ModPow(m.Subtract(one), m));
}
IBigInteger y = new BigInteger(m.BitLength - 1, _random);
IBigInteger n = new BigInteger(m.BitLength - 1, _random);
IBigInteger n3 = n.ModPow(three, m);
IBigInteger resX = n.ModPow(x, m);
IBigInteger resY = n.ModPow(y, m);
IBigInteger res = resX.Multiply(resY).Mod(m);
IBigInteger res3 = res.ModPow(three, m);
Assert.AreEqual(res3, n3.ModPow(x.Add(y), m));
IBigInteger a = x.Add(one); // Make sure it's not zero
IBigInteger b = y.Add(one); // Make sure it's not zero
Assert.AreEqual(a.ModPow(b, m).ModInverse(m), a.ModPow(b.Negate(), m));
}
}
示例14: Calculate
public override Number Calculate(BigInteger bigint1, BigInteger bigint2)
{
if (bigint1 == null || bigint2 == null)
{
return 0;
}
return bigint1.Add(bigint2);
}
示例15: ModInverseLorencz
private static BigInteger ModInverseLorencz(BigInteger X, BigInteger Modulo)
{
// Based on "New Algorithm for Classical Modular Inverse" Róbert Lórencz. LNCS 2523 (2002)
// PRE: a is coprime with modulo, a < modulo
int max = System.Math.Max(X._numberLength, Modulo._numberLength);
int[] uDigits = new int[max + 1]; // enough place to make all the inplace operation
int[] vDigits = new int[max + 1];
Array.Copy(Modulo._digits, 0, uDigits, 0, Modulo._numberLength);
Array.Copy(X._digits, 0, vDigits, 0, X._numberLength);
BigInteger u = new BigInteger(Modulo._sign, Modulo._numberLength, uDigits);
BigInteger v = new BigInteger(X._sign, X._numberLength, vDigits);
BigInteger r = new BigInteger(0, 1, new int[max + 1]); // BigInteger.ZERO;
BigInteger s = new BigInteger(1, 1, new int[max + 1]);
s._digits[0] = 1;
// r == 0 && s == 1, but with enough place
int coefU = 0, coefV = 0;
int n = Modulo.BitLength;
int k;
while (!IsPowerOfTwo(u, coefU) && !IsPowerOfTwo(v, coefV))
{
// modification of original algorithm: I calculate how many times the algorithm will enter in the same branch of if
k = HowManyIterations(u, n);
if (k != 0)
{
BitLevel.InplaceShiftLeft(u, k);
if (coefU >= coefV)
{
BitLevel.InplaceShiftLeft(r, k);
}
else
{
BitLevel.InplaceShiftRight(s, System.Math.Min(coefV - coefU, k));
if (k - (coefV - coefU) > 0)
BitLevel.InplaceShiftLeft(r, k - coefV + coefU);
}
coefU += k;
}
k = HowManyIterations(v, n);
if (k != 0)
{
BitLevel.InplaceShiftLeft(v, k);
if (coefV >= coefU)
{
BitLevel.InplaceShiftLeft(s, k);
}
else
{
BitLevel.InplaceShiftRight(r, System.Math.Min(coefU - coefV, k));
if (k - (coefU - coefV) > 0)
BitLevel.InplaceShiftLeft(s, k - coefU + coefV);
}
coefV += k;
}
if (u.Signum() == v.Signum())
{
if (coefU <= coefV)
{
Elementary.CompleteInPlaceSubtract(u, v);
Elementary.CompleteInPlaceSubtract(r, s);
}
else
{
Elementary.CompleteInPlaceSubtract(v, u);
Elementary.CompleteInPlaceSubtract(s, r);
}
}
else
{
if (coefU <= coefV)
{
Elementary.CompleteInPlaceAdd(u, v);
Elementary.CompleteInPlaceAdd(r, s);
}
else
{
Elementary.CompleteInPlaceAdd(v, u);
Elementary.CompleteInPlaceAdd(s, r);
}
}
if (v.Signum() == 0 || u.Signum() == 0)
throw new ArithmeticException("BigInteger not invertible");
}
if (IsPowerOfTwo(v, coefV))
{
r = s;
if (v.Signum() != u.Signum())
u = u.Negate();
}
if (u.TestBit(n))
{
//.........這裏部分代碼省略.........