當前位置: 首頁>>代碼示例>>C#>>正文


C# BigInteger.ShiftRight方法代碼示例

本文整理匯總了C#中BigInteger.ShiftRight方法的典型用法代碼示例。如果您正苦於以下問題:C# BigInteger.ShiftRight方法的具體用法?C# BigInteger.ShiftRight怎麽用?C# BigInteger.ShiftRight使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在BigInteger的用法示例。


在下文中一共展示了BigInteger.ShiftRight方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。

示例1: WindowNaf

		/**
		* Computes the Window NAF (non-adjacent Form) of an integer.
		* @param width The width <code>w</code> of the Window NAF. The width is
		* defined as the minimal number <code>w</code>, such that for any
		* <code>w</code> consecutive digits in the resulting representation, at
		* most one is non-zero.
		* @param k The integer of which the Window NAF is computed.
		* @return The Window NAF of the given width, such that the following holds:
		* <code>k = &#8722;<sub>i=0</sub><sup>l-1</sup> k<sub>i</sub>2<sup>i</sup>
		* </code>, where the <code>k<sub>i</sub></code> denote the elements of the
		* returned <code>sbyte[]</code>.
		*/
		public sbyte[] WindowNaf(sbyte width, BigInteger k)
		{
			// The window NAF is at most 1 element longer than the binary
			// representation of the integer k. sbyte can be used instead of short or
			// int unless the window width is larger than 8. For larger width use
			// short or int. However, a width of more than 8 is not efficient for
			// m = log2(q) smaller than 2305 Bits. Note: Values for m larger than
			// 1000 Bits are currently not used in practice.
			sbyte[] wnaf = new sbyte[k.BitLength + 1];

			// 2^width as short and BigInteger
			short pow2wB = (short)(1 << width);
			BigInteger pow2wBI = BigInteger.ValueOf(pow2wB);

			int i = 0;

			// The actual length of the WNAF
			int length = 0;

			// while k >= 1
			while (k.SignValue > 0)
			{
				// if k is odd
				if (k.TestBit(0))
				{
					// k Mod 2^width
					BigInteger remainder = k.Mod(pow2wBI);

					// if remainder > 2^(width - 1) - 1
					if (remainder.TestBit(width - 1))
					{
						wnaf[i] = (sbyte)(remainder.IntValue - pow2wB);
					}
					else
					{
						wnaf[i] = (sbyte)remainder.IntValue;
					}
					// wnaf[i] is now in [-2^(width-1), 2^(width-1)-1]

					k = k.Subtract(BigInteger.ValueOf(wnaf[i]));
					length = i;
				}
				else
				{
					wnaf[i] = 0;
				}

				// k = k/2
				k = k.ShiftRight(1);
				i++;
			}

			length++;

			// Reduce the WNAF array to its actual length
			sbyte[] wnafShort = new sbyte[length];
			Array.Copy(wnaf, 0, wnafShort, 0, length);
			return wnafShort;
		}
開發者ID:ktw,項目名稱:OutlookPrivacyPlugin,代碼行數:71,代碼來源:WNafMultiplier.cs

示例2: GenerateCompactWindowNaf

        public static int[] GenerateCompactWindowNaf(int width, BigInteger k)
        {
            if (width == 2)
            {
                return GenerateCompactNaf(k);
            }

            if (width < 2 || width > 16)
                throw new ArgumentException("must be in the range [2, 16]", "width");
            if ((k.BitLength >> 16) != 0)
                throw new ArgumentException("must have bitlength < 2^16", "k");
            if (k.SignValue == 0)
                return EMPTY_INTS;

            int[] wnaf = new int[k.BitLength / width + 1];

            // 2^width and a mask and sign bit set accordingly
            int pow2 = 1 << width;
            int mask = pow2 - 1;
            int sign = pow2 >> 1;

            bool carry = false;
            int length = 0, pos = 0;

            while (pos <= k.BitLength)
            {
                if (k.TestBit(pos) == carry)
                {
                    ++pos;
                    continue;
                }

                k = k.ShiftRight(pos);

                int digit = k.IntValue & mask;
                if (carry)
                {
                    ++digit;
                }

                carry = (digit & sign) != 0;
                if (carry)
                {
                    digit -= pow2;
                }

                int zeroes = length > 0 ? pos - 1 : pos;
                wnaf[length++] = (digit << 16) | zeroes;
                pos = width;
            }

            // Reduce the WNAF array to its actual length
            if (wnaf.Length > length)
            {
                wnaf = Trim(wnaf, length);
            }

            return wnaf;
        }
開發者ID:andibadra,項目名稱:bc-csharp,代碼行數:59,代碼來源:WNafUtilities.cs

示例3: FromBigInteger64

        public static ulong[] FromBigInteger64(BigInteger x)
        {
            if (x.SignValue < 0 || x.BitLength > 448)
                throw new ArgumentException();

            ulong[] z = Create64();
            int i = 0;
            while (x.SignValue != 0)
            {
                z[i++] = (ulong)x.LongValue;
                x = x.ShiftRight(64);
            }
            return z;
        }
開發者ID:ubberkid,項目名稱:PeerATT,代碼行數:14,代碼來源:Nat448.cs

示例4: FromBigInteger

        public static uint[] FromBigInteger(BigInteger x)
        {
            if (x.SignValue < 0 || x.BitLength > 192)
                throw new ArgumentException();

            uint[] z = Create();
            int i = 0;
            while (x.SignValue != 0)
            {
                z[i++] = (uint)x.IntValue;
                x = x.ShiftRight(32);
            }
            return z;
        }
開發者ID:kueiwa,項目名稱:ripple-cs,代碼行數:14,代碼來源:Nat192.cs

示例5: FromBigInteger

        public static uint[] FromBigInteger(int bits, BigInteger x)
        {
            if (x.SignValue < 0 || x.BitLength > bits)
                throw new ArgumentException();

            int len = (bits + 31) >> 5;
            uint[] z = Create(len);
            int i = 0;
            while (x.SignValue != 0)
            {
                z[i++] = (uint)x.IntValue;
                x = x.ShiftRight(32);
            }
            return z;
        }
開發者ID:rjdudley,項目名稱:bc-csharp,代碼行數:15,代碼來源:Nat.cs

示例6: ModReduce

 protected virtual BigInteger ModReduce(BigInteger x)
 {
     if (r == null)
     {
         x = x.Mod(q);
     }
     else
     {
         bool negative = x.SignValue < 0;
         if (negative)
         {
             x = x.Abs();
         }
         int qLen = q.BitLength;
         if (r.SignValue > 0)
         {
             BigInteger qMod = BigInteger.One.ShiftLeft(qLen);
             bool rIsOne = r.Equals(BigInteger.One);
             while (x.BitLength > (qLen + 1))
             {
                 BigInteger u = x.ShiftRight(qLen);
                 BigInteger v = x.Remainder(qMod);
                 if (!rIsOne)
                 {
                     u = u.Multiply(r);
                 }
                 x = u.Add(v);
             }
         }
         else
         {
             int d = ((qLen - 1) & 31) + 1;
             BigInteger mu = r.Negate();
             BigInteger u = mu.Multiply(x.ShiftRight(qLen - d));
             BigInteger quot = u.ShiftRight(qLen + d);
             BigInteger v = quot.Multiply(q);
             BigInteger bk1 = BigInteger.One.ShiftLeft(qLen + d);
             v = v.Remainder(bk1);
             x = x.Remainder(bk1);
             x = x.Subtract(v);
             if (x.SignValue < 0)
             {
                 x = x.Add(bk1);
             }
         }
         while (x.CompareTo(q) >= 0)
         {
             x = x.Subtract(q);
         }
         if (negative && x.SignValue != 0)
         {
             x = q.Subtract(x);
         }
     }
     return x;
 }
開發者ID:ubberkid,項目名稱:PeerATT,代碼行數:56,代碼來源:ECFieldElement.cs

示例7: ModHalfAbs

 protected virtual BigInteger ModHalfAbs(BigInteger x)
 {
     if (x.TestBit(0))
     {
         x = q.Subtract(x);
     }
     return x.ShiftRight(1);
 }
開發者ID:ubberkid,項目名稱:PeerATT,代碼行數:8,代碼來源:ECFieldElement.cs

示例8: EvenModPow

        /// <summary>
        /// Performs modular exponentiation using the Montgomery Reduction.
        /// <para>It requires that all parameters be positive and the modulus be even.
        /// Based on theThe square and multiply algorithm and the Montgomery Reduction 
        /// C. K. Koc - Montgomery Reduction with Even Modulus.
        /// The square and multiply algorithm and the Montgomery Reduction.
        /// ar.org.fitc.ref "C. K. Koc - Montgomery Reduction with Even Modulus"
        /// </para>
        /// </summary>
        /// 
        /// <param name="X">The BigInteger</param>
        /// <param name="Y">The Exponent</param>
        /// <param name="Modulus">The Modulus</param>
        /// 
        /// <returns><c>x1 + q * y</c></returns>
        internal static BigInteger EvenModPow(BigInteger X, BigInteger Y, BigInteger Modulus)
        {
            // PRE: (base > 0), (exponent > 0), (modulus > 0) and (modulus even)
            // STEP 1: Obtain the factorization 'modulus'= q * 2^j.
            int j = Modulus.LowestSetBit;
            BigInteger q = Modulus.ShiftRight(j);

            // STEP 2: Compute x1 := base^exponent (mod q).
            BigInteger x1 = OddModPow(X, Y, q);

            // STEP 3: Compute x2 := base^exponent (mod 2^j).
            BigInteger x2 = Pow2ModPow(X, Y, j);

            // STEP 4: Compute q^(-1) (mod 2^j) and y := (x2-x1) * q^(-1) (mod 2^j)
            BigInteger qInv = ModPow2Inverse(q, j);
            BigInteger y = (x2.Subtract(x1)).Multiply(qInv);
            InplaceModPow2(y, j);

            if (y._sign < 0)
                y = y.Add(BigInteger.GetPowerOfTwo(j));
            
            // STEP 5: Compute and return: x1 + q * y
            return x1.Add(q.Multiply(y));
        }
開發者ID:DeadlyEmbrace,項目名稱:NTRU-NET,代碼行數:39,代碼來源:Division.cs

示例9: TestTestBit

        public void TestTestBit()
        {
            for (int i = 0; i < 10; ++i)
            {
                var n = new BigInteger(128, Rnd);

                Assert.IsFalse(n.TestBit(128));
                Assert.IsTrue(n.Negate().TestBit(128));

                for (int j = 0; j < 10; ++j)
                {
                    int pos = Rnd.Next(128);
                    bool test = n.ShiftRight(pos).Remainder(Two).Equals(One);

                    Assert.AreEqual(test, n.TestBit(pos));
                }
            }
        }
開發者ID:ChemicalRocketeer,項目名稱:BigMath,代碼行數:18,代碼來源:BigIntegerTest.cs

示例10: TestGetLowestSetBit

 public void TestGetLowestSetBit()
 {
     for (int i = 0; i < 10; ++i)
     {
         BigInteger test = new BigInteger(128, 0, Rnd).Add(One);
         int bit1 = test.GetLowestSetBit();
         Assert.AreEqual(test, test.ShiftRight(bit1).ShiftLeft(bit1));
         int bit2 = test.ShiftLeft(i + 1).GetLowestSetBit();
         Assert.AreEqual(i + 1, bit2 - bit1);
         int bit3 = test.ShiftLeft(13*i + 1).GetLowestSetBit();
         Assert.AreEqual(13*i + 1, bit3 - bit1);
     }
 }
開發者ID:ChemicalRocketeer,項目名稱:BigMath,代碼行數:13,代碼來源:BigIntegerTest.cs

示例11: TauAdicWNaf

		/**
		* Computes the <code>[&#964;]</code>-adic window NAF of an element
		* <code>&#955;</code> of <code><b>Z</b>[&#964;]</code>.
		* @param mu The parameter &#956; of the elliptic curve.
		* @param lambda The element <code>&#955;</code> of
		* <code><b>Z</b>[&#964;]</code> of which to compute the
		* <code>[&#964;]</code>-adic NAF.
		* @param width The window width of the resulting WNAF.
		* @param pow2w 2<sup>width</sup>.
		* @param tw The auxiliary value <code>t<sub>w</sub></code>.
		* @param alpha The <code>&#945;<sub>u</sub></code>'s for the window width.
		* @return The <code>[&#964;]</code>-adic window NAF of
		* <code>&#955;</code>.
		*/
		public static sbyte[] TauAdicWNaf(sbyte mu, ZTauElement lambda,
			sbyte width, BigInteger pow2w, BigInteger tw, ZTauElement[] alpha)
		{
			if (!((mu == 1) || (mu == -1))) 
				throw new ArgumentException("mu must be 1 or -1");

			BigInteger norm = Norm(mu, lambda);

			// Ceiling of log2 of the norm 
			int log2Norm = norm.BitLength;

			// If length(TNAF) > 30, then length(TNAF) < log2Norm + 3.52
			int maxLength = log2Norm > 30 ? log2Norm + 4 + width : 34 + width;

			// The array holding the TNAF
			sbyte[] u = new sbyte[maxLength];

			// 2^(width - 1)
			BigInteger pow2wMin1 = pow2w.ShiftRight(1);

			// Split lambda into two BigIntegers to simplify calculations
			BigInteger r0 = lambda.u;
			BigInteger r1 = lambda.v;
			int i = 0;

			// while lambda <> (0, 0)
			while (!((r0.Equals(BigInteger.Zero))&&(r1.Equals(BigInteger.Zero))))
			{
				// if r0 is odd
				if (r0.TestBit(0)) 
				{
					// uUnMod = r0 + r1*tw Mod 2^width
					BigInteger uUnMod
						= r0.Add(r1.Multiply(tw)).Mod(pow2w);
	                
					sbyte uLocal;
					// if uUnMod >= 2^(width - 1)
					if (uUnMod.CompareTo(pow2wMin1) >= 0)
					{
						uLocal = (sbyte) uUnMod.Subtract(pow2w).IntValue;
					}
					else
					{
						uLocal = (sbyte) uUnMod.IntValue;
					}
					// uLocal is now in [-2^(width-1), 2^(width-1)-1]

					u[i] = uLocal;
					bool s = true;
					if (uLocal < 0) 
					{
						s = false;
						uLocal = (sbyte)-uLocal;
					}
					// uLocal is now >= 0

					if (s) 
					{
						r0 = r0.Subtract(alpha[uLocal].u);
						r1 = r1.Subtract(alpha[uLocal].v);
					}
					else
					{
						r0 = r0.Add(alpha[uLocal].u);
						r1 = r1.Add(alpha[uLocal].v);
					}
				}
				else
				{
					u[i] = 0;
				}

				BigInteger t = r0;

				if (mu == 1)
				{
					r0 = r1.Add(r0.ShiftRight(1));
				}
				else
				{
					// mu == -1
					r0 = r1.Subtract(r0.ShiftRight(1));
				}
				r1 = t.ShiftRight(1).Negate();
				i++;
			}
//.........這裏部分代碼省略.........
開發者ID:Xanagandr,項目名稱:DisaOpenSource,代碼行數:101,代碼來源:Tnaf.cs

示例12: ApproximateDivisionByN

		/**
		* Approximate division by <code>n</code>. For an integer
		* <code>k</code>, the value <code>&#955; = s k / n</code> is
		* computed to <code>c</code> bits of accuracy.
		* @param k The parameter <code>k</code>.
		* @param s The curve parameter <code>s<sub>0</sub></code> or
		* <code>s<sub>1</sub></code>.
		* @param vm The Lucas Sequence element <code>V<sub>m</sub></code>.
		* @param a The parameter <code>a</code> of the elliptic curve.
		* @param m The bit length of the finite field
		* <code><b>F</b><sub>m</sub></code>.
		* @param c The number of bits of accuracy, i.e. the scale of the returned
		* <code>SimpleBigDecimal</code>.
		* @return The value <code>&#955; = s k / n</code> computed to
		* <code>c</code> bits of accuracy.
		*/
		public static SimpleBigDecimal ApproximateDivisionByN(BigInteger k,
			BigInteger s, BigInteger vm, sbyte a, int m, int c)
		{
			int _k = (m + 5)/2 + c;
			BigInteger ns = k.ShiftRight(m - _k - 2 + a);

			BigInteger gs = s.Multiply(ns);

			BigInteger hs = gs.ShiftRight(m);

			BigInteger js = vm.Multiply(hs);

			BigInteger gsPlusJs = gs.Add(js);
			BigInteger ls = gsPlusJs.ShiftRight(_k-c);
			if (gsPlusJs.TestBit(_k-c-1))
			{
				// round up
				ls = ls.Add(BigInteger.One);
			}

			return new SimpleBigDecimal(ls, c);
		}
開發者ID:Xanagandr,項目名稱:DisaOpenSource,代碼行數:38,代碼來源:Tnaf.cs

示例13: Karatsuba

        /**
         * Performs the multiplication with the Karatsuba's algorithm.
         * <b>Karatsuba's algorithm:</b>
         *<tt>
         *             u = u<sub>1</sub> * B + u<sub>0</sub><br>
         *             v = v<sub>1</sub> * B + v<sub>0</sub><br>
         *
         *
         *  u*v = (u<sub>1</sub> * v<sub>1</sub>) * B<sub>2</sub> + ((u<sub>1</sub> - u<sub>0</sub>) * (v<sub>0</sub> - v<sub>1</sub>) + u<sub>1</sub> * v<sub>1</sub> +
         *  u<sub>0</sub> * v<sub>0</sub> ) * B + u<sub>0</sub> * v<sub>0</sub><br>
         *</tt>
         * @param op1 first factor of the product
         * @param op2 second factor of the product
         * @return {@code op1 * op2}
         * @see #multiply(BigInteger, BigInteger)
         */
        private static BigInteger Karatsuba(BigInteger op1, BigInteger op2)
        {
            BigInteger temp;
            if (op2.numberLength > op1.numberLength) {
                temp = op1;
                op1 = op2;
                op2 = temp;
            }
            if (op2.numberLength < WhenUseKaratsuba) {
                return MultiplyPap(op1, op2);
            }
            /*  Karatsuba:  u = u1*B + u0
             *              v = v1*B + v0
             *  u*v = (u1*v1)*B^2 + ((u1-u0)*(v0-v1) + u1*v1 + u0*v0)*B + u0*v0
             */
            // ndiv2 = (op1.numberLength / 2) * 32
            int ndiv2 = (int)(op1.numberLength & 0xFFFFFFFE) << 4;
            BigInteger upperOp1 = op1.ShiftRight(ndiv2);
            BigInteger upperOp2 = op2.ShiftRight(ndiv2);
            BigInteger lowerOp1 = op1.Subtract(upperOp1.ShiftLeft(ndiv2));
            BigInteger lowerOp2 = op2.Subtract(upperOp2.ShiftLeft(ndiv2));

            BigInteger upper = Karatsuba(upperOp1, upperOp2);
            BigInteger lower = Karatsuba(lowerOp1, lowerOp2);
            BigInteger middle = Karatsuba(upperOp1.Subtract(lowerOp1),
                    lowerOp2.Subtract(upperOp2));
            middle = middle.Add(upper).Add(lower);
            middle = middle.ShiftLeft(ndiv2);
            upper = upper.ShiftLeft(ndiv2 << 1);

            return upper.Add(middle).Add(lower);
        }
開發者ID:tupunco,項目名稱:deveel-math,代碼行數:48,代碼來源:Multiplication.cs

示例14: TestDivide

        public void TestDivide()
        {
            for (int i = -5; i <= 5; ++i)
            {
                try
                {
                    Val(i).Divide(Zero);
                    Assert.Fail("expected ArithmeticException");
                }
                catch (ArithmeticException)
                {
                }
            }

            const int product = 1*2*3*4*5*6*7*8*9;
            const int productPlus = product + 1;

            BigInteger bigProduct = Val(product);
            BigInteger bigProductPlus = Val(productPlus);

            for (int divisor = 1; divisor < 10; ++divisor)
            {
                // Exact division
                BigInteger expected = Val(product/divisor);

                Assert.AreEqual(expected, bigProduct.Divide(Val(divisor)));
                Assert.AreEqual(expected.Negate(), bigProduct.Negate().Divide(Val(divisor)));
                Assert.AreEqual(expected.Negate(), bigProduct.Divide(Val(divisor).Negate()));
                Assert.AreEqual(expected, bigProduct.Negate().Divide(Val(divisor).Negate()));

                expected = Val((product + 1)/divisor);

                Assert.AreEqual(expected, bigProductPlus.Divide(Val(divisor)));
                Assert.AreEqual(expected.Negate(), bigProductPlus.Negate().Divide(Val(divisor)));
                Assert.AreEqual(expected.Negate(), bigProductPlus.Divide(Val(divisor).Negate()));
                Assert.AreEqual(expected, bigProductPlus.Negate().Divide(Val(divisor).Negate()));
            }

            for (int rep = 0; rep < 10; ++rep)
            {
                var a = new BigInteger(100 - rep, 0, Rnd);
                var b = new BigInteger(100 + rep, 0, Rnd);
                var c = new BigInteger(10 + rep, 0, Rnd);
                BigInteger d = a.Multiply(b).Add(c);
                BigInteger e = d.Divide(a);

                Assert.AreEqual(b, e);
            }

            // Special tests for power of two since uses different code path internally
            for (int i = 0; i < 100; ++i)
            {
                int shift = Rnd.Next(64);
                BigInteger a = One.ShiftLeft(shift);
                var b = new BigInteger(64 + Rnd.Next(64), Rnd);
                BigInteger bShift = b.ShiftRight(shift);

                string data = "shift=" + shift + ", b=" + b.ToString(16);

                Assert.AreEqual(bShift, b.Divide(a), data);
                Assert.AreEqual(bShift.Negate(), b.Divide(a.Negate()), data);
                Assert.AreEqual(bShift.Negate(), b.Negate().Divide(a), data);
                Assert.AreEqual(bShift, b.Negate().Divide(a.Negate()), data);
            }

            // Regression
            {
                int shift = 63;
                BigInteger a = One.ShiftLeft(shift);
                var b = new BigInteger(1, "2504b470dc188499".HexToBytes());
                BigInteger bShift = b.ShiftRight(shift);

                string data = "shift=" + shift + ", b=" + b.ToString(16);

                Assert.AreEqual(bShift, b.Divide(a), data);
                Assert.AreEqual(bShift.Negate(), b.Divide(a.Negate()), data);
                //				Assert.AreEqual(bShift.Negate(), b.Negate().Divide(a), data);
                Assert.AreEqual(bShift, b.Negate().Divide(a.Negate()), data);
            }
        }
開發者ID:ChemicalRocketeer,項目名稱:BigMath,代碼行數:80,代碼來源:BigIntegerTest.cs

示例15: GenerateWindowNaf

        /**
         * Computes the Window NAF (non-adjacent Form) of an integer.
         * @param width The width <code>w</code> of the Window NAF. The width is
         * defined as the minimal number <code>w</code>, such that for any
         * <code>w</code> consecutive digits in the resulting representation, at
         * most one is non-zero.
         * @param k The integer of which the Window NAF is computed.
         * @return The Window NAF of the given width, such that the following holds:
         * <code>k = &amp;sum;<sub>i=0</sub><sup>l-1</sup> k<sub>i</sub>2<sup>i</sup>
         * </code>, where the <code>k<sub>i</sub></code> denote the elements of the
         * returned <code>byte[]</code>.
         */
        public static byte[] GenerateWindowNaf(int width, BigInteger k)
        {
            if (width == 2)
            {
                return GenerateNaf(k);
            }

            if (width < 2 || width > 8)
                throw new ArgumentException("must be in the range [2, 8]", "width");
            if (k.SignValue == 0)
                return EMPTY_BYTES;

            byte[] wnaf = new byte[k.BitLength + 1];

            // 2^width and a mask and sign bit set accordingly
            int pow2 = 1 << width;
            int mask = pow2 - 1;
            int sign = pow2 >> 1;

            bool carry = false;
            int length = 0, pos = 0;

            while (pos <= k.BitLength)
            {
                if (k.TestBit(pos) == carry)
                {
                    ++pos;
                    continue;
                }

                k = k.ShiftRight(pos);

                int digit = k.IntValue & mask;
                if (carry)
                {
                    ++digit;
                }

                carry = (digit & sign) != 0;
                if (carry)
                {
                    digit -= pow2;
                }

                length += (length > 0) ? pos - 1 : pos;
                wnaf[length++] = (byte)digit;
                pos = width;
            }

            // Reduce the WNAF array to its actual length
            if (wnaf.Length > length)
            {
                wnaf = Trim(wnaf, length);
            }

            return wnaf;
        }
開發者ID:bitcoinkit,項目名稱:BitcoinKit-CSharp,代碼行數:69,代碼來源:WNafUtilities.cs


注:本文中的BigInteger.ShiftRight方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。