本文整理匯總了C#中BigInteger.compareTo方法的典型用法代碼示例。如果您正苦於以下問題:C# BigInteger.compareTo方法的具體用法?C# BigInteger.compareTo怎麽用?C# BigInteger.compareTo使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類BigInteger
的用法示例。
在下文中一共展示了BigInteger.compareTo方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: completeInPlaceSubtract
/**
* Same as
*
* @link #inplaceSubtract(BigInteger, BigInteger), but without the
* restriction of non-positive values
* @param op1
* should have enough space to save the result
* @param op2
*/
internal static void completeInPlaceSubtract(BigInteger op1, BigInteger op2)
{
int resultSign = op1.compareTo (op2);
if (op1.sign == 0) {
java.lang.SystemJ.arraycopy (op2.digits, 0, op1.digits, 0, op2.numberLength);
op1.sign = -op2.sign;
} else if (op1.sign != op2.sign) {
add (op1.digits, op1.digits, op1.numberLength, op2.digits,
op2.numberLength);
op1.sign = resultSign;
} else {
int sign = unsignedArraysCompare (op1.digits,
op2.digits, op1.numberLength, op2.numberLength);
if (sign > 0) {
subtract (op1.digits, op1.digits, op1.numberLength, op2.digits,
op2.numberLength); // op1 = op1 - op2
// op1.sign remains equal
} else {
inverseSubtract (op1.digits, op1.digits, op1.numberLength,
op2.digits, op2.numberLength); // op1 = op2 - op1
op1.sign = -op1.sign;
}
}
op1.numberLength = java.lang.Math.max (op1.numberLength, op2.numberLength) + 1;
op1.cutOffLeadingZeroes ();
op1.unCache();
}
示例2: modInverseMontgomery
/**
* Calculates a.modInverse(p) Based on: Savas, E; Koc, C "The Montgomery Modular
* Inverse - Revised"
*/
internal static BigInteger modInverseMontgomery(BigInteger a, BigInteger p)
{
if (a.sign == 0){
// ZERO hasn't inverse
// math.19: BigInteger not invertible
throw new ArithmeticException("BigInteger not invertible");
}
if (!p.testBit(0)){
// montgomery inverse require even modulo
return modInverseHars(a, p);
}
int m = p.numberLength * 32;
// PRE: a \in [1, p - 1]
BigInteger u, v, r, s;
u = p.copy(); // make copy to use inplace method
v = a.copy();
int max = java.lang.Math.max(v.numberLength, u.numberLength);
r = new BigInteger(1, 1, new int[max + 1]);
s = new BigInteger(1, 1, new int[max + 1]);
s.digits[0] = 1;
// s == 1 && v == 0
int k = 0;
int lsbu = u.getLowestSetBit();
int lsbv = v.getLowestSetBit();
int toShift;
if (lsbu > lsbv) {
BitLevel.inplaceShiftRight(u, lsbu);
BitLevel.inplaceShiftRight(v, lsbv);
BitLevel.inplaceShiftLeft(r, lsbv);
k += lsbu - lsbv;
} else {
BitLevel.inplaceShiftRight(u, lsbu);
BitLevel.inplaceShiftRight(v, lsbv);
BitLevel.inplaceShiftLeft(s, lsbu);
k += lsbv - lsbu;
}
r.sign = 1;
while (v.signum() > 0) {
// INV v >= 0, u >= 0, v odd, u odd (except last iteration when v is even (0))
while (u.compareTo(v) > BigInteger.EQUALS) {
Elementary.inplaceSubtract(u, v);
toShift = u.getLowestSetBit();
BitLevel.inplaceShiftRight(u, toShift);
Elementary.inplaceAdd(r, s);
BitLevel.inplaceShiftLeft(s, toShift);
k += toShift;
}
while (u.compareTo(v) <= BigInteger.EQUALS) {
Elementary.inplaceSubtract(v, u);
if (v.signum() == 0)
break;
toShift = v.getLowestSetBit();
BitLevel.inplaceShiftRight(v, toShift);
Elementary.inplaceAdd(s, r);
BitLevel.inplaceShiftLeft(r, toShift);
k += toShift;
}
}
if (!u.isOne()){
// in u is stored the gcd
// math.19: BigInteger not invertible.
throw new ArithmeticException("BigInteger not invertible");
}
if (r.compareTo(p) >= BigInteger.EQUALS) {
Elementary.inplaceSubtract(r, p);
}
r = p.subtract(r);
// Have pair: ((BigInteger)r, (Integer)k) where r == a^(-1) * 2^k mod (module)
int n1 = calcN(p);
if (k > m) {
r = monPro(r, BigInteger.ONE, p, n1);
k = k - m;
}
r = monPro(r, BigInteger.getPowerOfTwo(m - k), p, n1);
return r;
}
示例3: gcdBinary
/**
* @param m a positive modulus
* Return the greatest common divisor of op1 and op2,
*
* @param op1
* must be greater than zero
* @param op2
* must be greater than zero
* @see BigInteger#gcd(BigInteger)
* @return {@code GCD(op1, op2)}
*/
internal static BigInteger gcdBinary(BigInteger op1, BigInteger op2)
{
// PRE: (op1 > 0) and (op2 > 0)
/*
* Divide both number the maximal possible times by 2 without rounding
* gcd(2*a, 2*b) = 2 * gcd(a,b)
*/
int lsb1 = op1.getLowestSetBit();
int lsb2 = op2.getLowestSetBit();
int pow2Count = java.lang.Math.min(lsb1, lsb2);
BitLevel.inplaceShiftRight(op1, lsb1);
BitLevel.inplaceShiftRight(op2, lsb2);
BigInteger swap;
// I want op2 > op1
if (op1.compareTo(op2) == BigInteger.GREATER) {
swap = op1;
op1 = op2;
op2 = swap;
}
do { // INV: op2 >= op1 && both are odd unless op1 = 0
// Optimization for small operands
// (op2.bitLength() < 64) implies by INV (op1.bitLength() < 64)
if (( op2.numberLength == 1 )
|| ( ( op2.numberLength == 2 ) && ( op2.digits[1] > 0 ) )) {
op2 = BigInteger.valueOf(Division.gcdBinary(op1.longValue(),
op2.longValue()));
break;
}
// Implements one step of the Euclidean algorithm
// To reduce one operand if it's much smaller than the other one
if (op2.numberLength > op1.numberLength * 1.2) {
op2 = op2.remainder(op1);
if (op2.signum() != 0) {
BitLevel.inplaceShiftRight(op2, op2.getLowestSetBit());
}
} else {
// Use Knuth's algorithm of successive subtract and shifting
do {
Elementary.inplaceSubtract(op2, op1); // both are odd
BitLevel.inplaceShiftRight(op2, op2.getLowestSetBit()); // op2 is even
} while (op2.compareTo(op1) >= BigInteger.EQUALS);
}
// now op1 >= op2
swap = op2;
op2 = op1;
op1 = swap;
} while (op1.sign != 0);
return op2.shiftLeft(pow2Count);
}
示例4: modInverseHars
/**
* Implements the "Shifting Euclidean modular inverse algorithm".
* "Laszlo Hars - Modular Inverse Algorithms Without Multiplications
* for Cryptographic Applications"
*
* @see BigInteger#modInverse(BigInteger)
* @param a
* a positive number
* @param m
* a positive modulus
*/
internal static BigInteger modInverseHars(BigInteger a, BigInteger m)
{
// PRE: (a > 0) and (m > 0)
BigInteger u, v, r, s, temp;
// u = MAX(a,m), v = MIN(a,m)
if (a.compareTo(m) == BigInteger.LESS) {
u = m;
v = a;
r = BigInteger.ZERO;
s = BigInteger.ONE;
} else {
v = m;
u = a;
s = BigInteger.ZERO;
r = BigInteger.ONE;
}
int uLen = u.bitLength();
int vLen = v.bitLength();
int f = uLen - vLen;
while (vLen > 1) {
if (u.sign == v.sign) {
u = u.subtract(v.shiftLeft(f));
r = r.subtract(s.shiftLeft(f));
} else {
u = u.add(v.shiftLeft(f));
r = r.add(s.shiftLeft(f));
}
uLen = u.abs().bitLength();
vLen = v.abs().bitLength();
f = uLen - vLen;
if (f < 0) {
// SWAP(u,v)
temp = u;
u = v;
v = temp;
// SWAP(r,s)
temp = r;
r = s;
s = temp;
f = -f;
vLen = uLen;
}
}
if (v.sign == 0) {
return BigInteger.ZERO;
}
if (v.sign < 0) {
s = s.negate();
}
if (s.compareTo(m) == BigInteger.GREATER) {
return s.subtract(m);
}
if (s.sign < 0) {
return s.add(m);
}
return s; // a^(-1) mod m
}
示例5: millerRabin
/**
* The Miller-Rabin primality test.
*
* @param n the input number to be tested.
* @param t the number of trials.
* @return {@code false} if the number is definitely compose, otherwise
* {@code true} with probability {@code 1 - 4<sup>(-t)</sup>}.
* @ar.org.fitc.ref "D. Knuth, The Art of Computer Programming Vo.2, Section
* 4.5.4., Algorithm P"
*/
private static bool millerRabin(BigInteger n, int t)
{
// PRE: n >= 0, t >= 0
BigInteger x; // x := UNIFORM{2...n-1}
BigInteger y; // y := x^(q * 2^j) mod n
BigInteger n_minus_1 = n.subtract(BigInteger.ONE); // n-1
int bitLength = n_minus_1.bitLength(); // ~ log2(n-1)
// (q,k) such that: n-1 = q * 2^k and q is odd
int k = n_minus_1.getLowestSetBit();
BigInteger q = n_minus_1.shiftRight(k);
java.util.Random rnd = new java.util.Random();
for (int i = 0; i < t; i++) {
// To generate a witness 'x', first it use the primes of table
if (i < primes.Length) {
x = BIprimes[i];
} else {/*
* It generates random witness only if it's necesssary. Note
* that all methods would call Miller-Rabin with t <= 50 so
* this part is only to do more robust the algorithm
*/
do {
x = new BigInteger(bitLength, rnd);
} while ((x.compareTo(n) >= BigInteger.EQUALS) || (x.sign == 0)
|| x.isOne());
}
y = x.modPow(q, n);
if (y.isOne() || y.equals(n_minus_1)) {
continue;
}
for (int j = 1; j < k; j++) {
if (y.equals(n_minus_1)) {
continue;
}
y = y.multiply(y).mod(n);
if (y.isOne()) {
return false;
}
}
if (!y.equals(n_minus_1)) {
return false;
}
}
return true;
}