本文整理匯總了C#中BigInteger.ShiftLeft方法的典型用法代碼示例。如果您正苦於以下問題:C# BigInteger.ShiftLeft方法的具體用法?C# BigInteger.ShiftLeft怎麽用?C# BigInteger.ShiftLeft使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類BigInteger
的用法示例。
在下文中一共展示了BigInteger.ShiftLeft方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: GenerateCompactNaf
public static int[] GenerateCompactNaf(BigInteger k)
{
if ((k.BitLength >> 16) != 0)
throw new ArgumentException("must have bitlength < 2^16", "k");
if (k.SignValue == 0)
return EMPTY_INTS;
BigInteger _3k = k.ShiftLeft(1).Add(k);
int bits = _3k.BitLength;
int[] naf = new int[bits >> 1];
BigInteger diff = _3k.Xor(k);
int highBit = bits - 1, length = 0, zeroes = 0;
for (int i = 1; i < highBit; ++i)
{
if (!diff.TestBit(i))
{
++zeroes;
continue;
}
int digit = k.TestBit(i) ? -1 : 1;
naf[length++] = (digit << 16) | zeroes;
zeroes = 1;
++i;
}
naf[length++] = (1 << 16) | zeroes;
if (naf.Length > length)
{
naf = Trim(naf, length);
}
return naf;
}
示例2: Add
public SimpleBigDecimal Add(BigInteger b)
{
return new SimpleBigDecimal(bigInt.Add(b.ShiftLeft(scale)), scale);
}
示例3: GetInstance
/**
* Returns a <code>SimpleBigDecimal</code> representing the same numerical
* value as <code>value</code>.
* @param value The value of the <code>SimpleBigDecimal</code> to be
* created.
* @param scale The scale of the <code>SimpleBigDecimal</code> to be
* created.
* @return The such created <code>SimpleBigDecimal</code>.
*/
public static SimpleBigDecimal GetInstance(BigInteger val, int scale)
{
return new SimpleBigDecimal(val.ShiftLeft(scale), scale);
}
示例4: CompareTo
public int CompareTo(BigInteger val)
{
return bigInt.CompareTo(val.ShiftLeft(scale));
}
示例5: DblToRgbPrecise
//.........這裏部分代碼省略.........
} else {
c2Num = 0;
c2Den = -wExp2;
}
if (wExp10 >= 0) {
c5Num = 0;
c5Den = wExp10;
c2Den += wExp10;
} else {
c2Num -= wExp10;
c5Num = -wExp10;
c5Den = 0;
}
if (c2Num > 0 && c2Den > 0) {
w1 = c2Num < c2Den ? c2Num : c2Den;
c2Num -= w1;
c2Den -= w1;
}
// We need a bit for the Hi and Lo values.
c2Num++;
c2Den++;
// Initialize biNum and multiply by powers of 5.
if (c5Num > 0) {
Debug.Assert(0 == c5Den);
biHi.MulPow5(c5Num);
biNum.InitFromBigint(biHi);
if (1 == cu) {
biNum.MulAdd(rgu0, 0);
} else {
biNum.MulAdd(rgu1, 0);
biNum.ShiftLeft(32);
if (0 != rgu0) {
biT.InitFromBigint(biHi);
biT.MulAdd(rgu0, 0);
biNum.Add(biT);
}
}
} else {
Debug.Assert(cu <= 2);
biNum.InitFromDigits(rgu0, rgu1, cu);
if (c5Den > 0) {
biDen.MulPow5(c5Den);
}
}
// BigInteger.DivRem only works if the 4 high bits of the divisor are 0.
// It works most efficiently if there are exactly 4 zero high bits.
// Adjust c2Den and c2Num to guarantee this.
w1 = CbitZeroLeft(biDen[biDen.Length - 1]);
w1 = (w1 + 28 - c2Den) & 0x1F;
c2Num += w1;
c2Den += w1;
// Multiply by powers of 2.
Debug.Assert(c2Num > 0 && c2Den > 0);
biNum.ShiftLeft(c2Num);
if (c2Num > 1) {
biHi.ShiftLeft(c2Num - 1);
}
biDen.ShiftLeft(c2Den);
Debug.Assert(0 == (biDen[biDen.Length - 1] & 0xF0000000));
Debug.Assert(0 != (biDen[biDen.Length - 1] & 0x08000000));
示例6: DivideAndRound
/// <summary>
/// Divide two BigIntegers and return the rounded result
/// </summary>
///
/// <param name="A">The first BigInteger</param>
/// <param name="B">The second BigInteger</param>
///
/// <returns>The rounded result</returns>
public static BigInteger DivideAndRound(BigInteger A, BigInteger B)
{
if (A.Signum() < 0)
return DivideAndRound(A.Negate(), B).Negate();
if (B.Signum() < 0)
return DivideAndRound(A, B.Negate()).Negate();
return A.ShiftLeft(1).Add(B).Divide(B.ShiftLeft(1));
}
示例7: GcdBinary
/// <summary>
/// Return the greatest common divisor of X and Y
/// </summary>
///
/// <param name="X">Operand 1, must be greater than zero</param>
/// <param name="Y">Operand 2, must be greater than zero</param>
///
/// <returns>Returns <c>GCD(X, Y)</c></returns>
internal static BigInteger GcdBinary(BigInteger X, BigInteger Y)
{
// Divide both number the maximal possible times by 2 without rounding * gcd(2*a, 2*b) = 2 * gcd(a,b)
int lsb1 = X.LowestSetBit;
int lsb2 = Y.LowestSetBit;
int pow2Count = System.Math.Min(lsb1, lsb2);
BitLevel.InplaceShiftRight(X, lsb1);
BitLevel.InplaceShiftRight(Y, lsb2);
BigInteger swap;
// I want op2 > op1
if (X.CompareTo(Y) == BigInteger.GREATER)
{
swap = X;
X = Y;
Y = swap;
}
do
{ // INV: op2 >= op1 && both are odd unless op1 = 0
// Optimization for small operands (op2.bitLength() < 64) implies by INV (op1.bitLength() < 64)
if ((Y._numberLength == 1) || ((Y._numberLength == 2) && (Y._digits[1] > 0)))
{
Y = BigInteger.ValueOf(Division.GcdBinary(X.ToInt64(), Y.ToInt64()));
break;
}
// Implements one step of the Euclidean algorithm
// To reduce one operand if it's much smaller than the other one
if (Y._numberLength > X._numberLength * 1.2)
{
Y = Y.Remainder(X);
if (Y.Signum() != 0)
BitLevel.InplaceShiftRight(Y, Y.LowestSetBit);
}
else
{
// Use Knuth's algorithm of successive subtract and shifting
do
{
Elementary.InplaceSubtract(Y, X); // both are odd
BitLevel.InplaceShiftRight(Y, Y.LowestSetBit); // op2 is even
} while (Y.CompareTo(X) >= BigInteger.EQUALS);
}
// now op1 >= op2
swap = Y;
Y = X;
X = swap;
} while (X._sign != 0);
return Y.ShiftLeft(pow2Count);
}
示例8: TestMultiply
public void TestMultiply()
{
BigInteger one = BigInteger.One;
Assert.AreEqual(one, one.Negate().Multiply(one.Negate()));
for (int i = 0; i < 100; ++i)
{
int aLen = 64 + Rnd.Next(64);
int bLen = 64 + Rnd.Next(64);
BigInteger a = new BigInteger(aLen, Rnd).SetBit(aLen);
BigInteger b = new BigInteger(bLen, Rnd).SetBit(bLen);
var c = new BigInteger(32, Rnd);
BigInteger ab = a.Multiply(b);
BigInteger bc = b.Multiply(c);
Assert.AreEqual(ab.Add(bc), a.Add(c).Multiply(b));
Assert.AreEqual(ab.Subtract(bc), a.Subtract(c).Multiply(b));
}
// Special tests for power of two since uses different code path internally
for (int i = 0; i < 100; ++i)
{
int shift = Rnd.Next(64);
BigInteger a = one.ShiftLeft(shift);
var b = new BigInteger(64 + Rnd.Next(64), Rnd);
BigInteger bShift = b.ShiftLeft(shift);
Assert.AreEqual(bShift, a.Multiply(b));
Assert.AreEqual(bShift.Negate(), a.Multiply(b.Negate()));
Assert.AreEqual(bShift.Negate(), a.Negate().Multiply(b));
Assert.AreEqual(bShift, a.Negate().Multiply(b.Negate()));
Assert.AreEqual(bShift, b.Multiply(a));
Assert.AreEqual(bShift.Negate(), b.Multiply(a.Negate()));
Assert.AreEqual(bShift.Negate(), b.Negate().Multiply(a));
Assert.AreEqual(bShift, b.Negate().Multiply(a.Negate()));
}
}
示例9: GenerateNaf
public static byte[] GenerateNaf(BigInteger k)
{
if (k.SignValue == 0)
return EMPTY_BYTES;
BigInteger _3k = k.ShiftLeft(1).Add(k);
int digits = _3k.BitLength - 1;
byte[] naf = new byte[digits];
BigInteger diff = _3k.Xor(k);
for (int i = 1; i < digits; ++i)
{
if (diff.TestBit(i))
{
naf[i - 1] = (byte)(k.TestBit(i) ? -1 : 1);
++i;
}
}
naf[digits - 1] = 1;
return naf;
}
示例10: multZModF
/**
* Computes <code>z * a(z) mod f(z)</code>, where <code>f(z)</code> is
* the reduction polynomial of <code>this</code>.
* @param a The polynomial <code>a(z)</code> to be multiplied by
* <code>z mod f(z)</code>.
* @return <code>z * a(z) mod f(z)</code>
*/
private BigInteger multZModF(
BigInteger a)
{
// Left-shift of a(z)
BigInteger az = a.ShiftLeft(1);
if (az.TestBit(this.m))
{
// If the coefficient of z^m in a(z) Equals 1, reduction
// modulo f(z) is performed: Add f(z) to to a(z):
// Step 1: Unset mth coeffient of a(z)
az = az.ClearBit(this.m);
// Step 2: Add r(z) to a(z), where r(z) is defined as
// f(z) = z^m + r(z), and k1, k2, k3 are the positions of
// the non-zero coefficients in r(z)
az = az.FlipBit(0);
az = az.FlipBit(this.k1);
if (this.representation == Ppb)
{
az = az.FlipBit(this.k2);
az = az.FlipBit(this.k3);
}
}
return az;
}
示例11: GenerateSafePrimes
/*
* Finds a pair of prime BigInteger's {p, q: p = 2q + 1}
*
* (see: Handbook of Applied Cryptography 4.86)
*/
internal static BigInteger[] GenerateSafePrimes(int size, int certainty, SecureRandom random)
{
BigInteger p, q;
int qLength = size - 1;
if (size <= 32)
{
for (;;)
{
q = new BigInteger(qLength, 2, random);
p = q.ShiftLeft(1).Add(BigInteger.One);
if (p.IsProbablePrime(certainty)
&& (certainty <= 2 || q.IsProbablePrime(certainty)))
break;
}
}
else
{
// Note: Modified from Java version for speed
for (;;)
{
q = new BigInteger(qLength, 0, random);
retry:
for (int i = 0; i < primeLists.Length; ++i)
{
int test = q.Remainder(PrimeProducts[i]).IntValue;
if (i == 0)
{
int rem3 = test % 3;
if (rem3 != 2)
{
int diff = 2 * rem3 + 2;
q = q.Add(BigInteger.ValueOf(diff));
test = (test + diff) % primeProducts[i];
}
}
int[] primeList = primeLists[i];
for (int j = 0; j < primeList.Length; ++j)
{
int prime = primeList[j];
int qRem = test % prime;
if (qRem == 0 || qRem == (prime >> 1))
{
q = q.Add(Six);
goto retry;
}
}
}
if (q.BitLength != qLength)
continue;
if (!q.RabinMillerTest(2, random))
continue;
p = q.ShiftLeft(1).Add(BigInteger.One);
if (p.RabinMillerTest(certainty, random)
&& (certainty <= 2 || q.RabinMillerTest(certainty - 2, random)))
break;
}
}
return new BigInteger[] { p, q };
}
示例12: GenerateParameters_FIPS186_2
private DsaParameters GenerateParameters_FIPS186_2()
{
byte[] seed = new byte[20];
byte[] part1 = new byte[20];
byte[] part2 = new byte[20];
byte[] u = new byte[20];
Sha1Digest sha1 = new Sha1Digest();
int n = (L - 1) / 160;
byte[] w = new byte[L / 8];
for (;;)
{
random.NextBytes(seed);
Hash(sha1, seed, part1);
Array.Copy(seed, 0, part2, 0, seed.Length);
Inc(part2);
Hash(sha1, part2, part2);
for (int i = 0; i != u.Length; i++)
{
u[i] = (byte)(part1[i] ^ part2[i]);
}
u[0] |= (byte)0x80;
u[19] |= (byte)0x01;
BigInteger q = new BigInteger(1, u);
if (!q.IsProbablePrime(certainty))
continue;
byte[] offset = Arrays.Clone(seed);
Inc(offset);
for (int counter = 0; counter < 4096; ++counter)
{
for (int k = 0; k < n; k++)
{
Inc(offset);
Hash(sha1, offset, part1);
Array.Copy(part1, 0, w, w.Length - (k + 1) * part1.Length, part1.Length);
}
Inc(offset);
Hash(sha1, offset, part1);
Array.Copy(part1, part1.Length - ((w.Length - (n) * part1.Length)), w, 0, w.Length - n * part1.Length);
w[0] |= (byte)0x80;
BigInteger x = new BigInteger(1, w);
BigInteger c = x.Mod(q.ShiftLeft(1));
BigInteger p = x.Subtract(c.Subtract(BigInteger.One));
if (p.BitLength != L)
continue;
if (p.IsProbablePrime(certainty))
{
BigInteger g = CalculateGenerator_FIPS186_2(p, q, random);
return new DsaParameters(p, q, g, new DsaValidationParameters(seed, counter));
}
}
}
}
示例13: GenerateParameters_FIPS186_3
/**
* generate suitable parameters for DSA, in line with
* <i>FIPS 186-3 A.1 Generation of the FFC Primes p and q</i>.
*/
private DsaParameters GenerateParameters_FIPS186_3()
{
// A.1.1.2 Generation of the Probable Primes p and q Using an Approved Hash Function
// FIXME This should be configurable (digest size in bits must be >= N)
IDigest d = new Sha256Digest();
int outlen = d.GetDigestSize() * 8;
// 1. Check that the (L, N) pair is in the list of acceptable (L, N pairs) (see Section 4.2). If
// the pair is not in the list, then return INVALID.
// Note: checked at initialisation
// 2. If (seedlen < N), then return INVALID.
// FIXME This should be configurable (must be >= N)
int seedlen = N;
byte[] seed = new byte[seedlen / 8];
// 3. n = ceiling(L ⁄ outlen) – 1.
int n = (L - 1) / outlen;
// 4. b = L – 1 – (n ∗ outlen).
int b = (L - 1) % outlen;
byte[] output = new byte[d.GetDigestSize()];
for (;;)
{
// 5. Get an arbitrary sequence of seedlen bits as the domain_parameter_seed.
random.NextBytes(seed);
// 6. U = Hash (domain_parameter_seed) mod 2^(N–1).
Hash(d, seed, output);
BigInteger U = new BigInteger(1, output).Mod(BigInteger.One.ShiftLeft(N - 1));
// 7. q = 2^(N–1) + U + 1 – ( U mod 2).
BigInteger q = BigInteger.One.ShiftLeft(N - 1).Add(U).Add(BigInteger.One).Subtract(
U.Mod(BigInteger.Two));
// 8. Test whether or not q is prime as specified in Appendix C.3.
// TODO Review C.3 for primality checking
if (!q.IsProbablePrime(certainty))
{
// 9. If q is not a prime, then go to step 5.
continue;
}
// 10. offset = 1.
// Note: 'offset' value managed incrementally
byte[] offset = Arrays.Clone(seed);
// 11. For counter = 0 to (4L – 1) do
int counterLimit = 4 * L;
for (int counter = 0; counter < counterLimit; ++counter)
{
// 11.1 For j = 0 to n do
// Vj = Hash ((domain_parameter_seed + offset + j) mod 2^seedlen).
// 11.2 W = V0 + (V1 ∗ 2^outlen) + ... + (V^(n–1) ∗ 2^((n–1) ∗ outlen)) + ((Vn mod 2^b) ∗ 2^(n ∗ outlen)).
// TODO Assemble w as a byte array
BigInteger W = BigInteger.Zero;
for (int j = 0, exp = 0; j <= n; ++j, exp += outlen)
{
Inc(offset);
Hash(d, offset, output);
BigInteger Vj = new BigInteger(1, output);
if (j == n)
{
Vj = Vj.Mod(BigInteger.One.ShiftLeft(b));
}
W = W.Add(Vj.ShiftLeft(exp));
}
// 11.3 X = W + 2^(L–1). Comment: 0 ≤ W < 2L–1; hence, 2L–1 ≤ X < 2L.
BigInteger X = W.Add(BigInteger.One.ShiftLeft(L - 1));
// 11.4 c = X mod 2q.
BigInteger c = X.Mod(q.ShiftLeft(1));
// 11.5 p = X - (c - 1). Comment: p ≡ 1 (mod 2q).
BigInteger p = X.Subtract(c.Subtract(BigInteger.One));
// 11.6 If (p < 2^(L - 1)), then go to step 11.9
if (p.BitLength != L)
continue;
// 11.7 Test whether or not p is prime as specified in Appendix C.3.
// TODO Review C.3 for primality checking
if (p.IsProbablePrime(certainty))
{
// 11.8 If p is determined to be prime, then return VALID and the values of p, q and
// (optionally) the values of domain_parameter_seed and counter.
// TODO Make configurable (8-bit unsigned)?
// int index = 1;
// BigInteger g = CalculateGenerator_FIPS186_3_Verifiable(d, p, q, seed, index);
// if (g != null)
// {
// // TODO Should 'index' be a part of the validation parameters?
//.........這裏部分代碼省略.........
示例14: OddModPow
/// <summary>
/// Performs modular exponentiation using the Montgomery Reduction.
/// <para>It requires that all parameters be positive and the modulus be odd. </para>
/// </summary>
///
/// <param name="X">The BigInteger</param>
/// <param name="Y">The exponent</param>
/// <param name="Modulus">The modulus</param>
///
/// <returns><c>(modulus[0]^(-1)) (mod 2^32)</c></returns>
internal static BigInteger OddModPow(BigInteger X, BigInteger Y, BigInteger Modulus)
{
// PRE: (base > 0), (exponent > 0), (modulus > 0) and (odd modulus)
int k = (Modulus._numberLength << 5); // r = 2^k
// n-residue of base [base * r (mod modulus)]
BigInteger a2 = X.ShiftLeft(k).Mod(Modulus);
// n-residue of base [1 * r (mod modulus)]
BigInteger x2 = BigInteger.GetPowerOfTwo(k).Mod(Modulus);
BigInteger res;
// Compute (modulus[0]^(-1)) (mod 2^32) for odd modulus
int n2 = CalcN(Modulus);
if (Modulus._numberLength == 1)
res = SquareAndMultiply(x2, a2, Y, Modulus, n2);
else
res = SlidingWindow(x2, a2, Y, Modulus, n2);
return MonPro(res, BigInteger.One, Modulus, n2);
}
示例15: Subtract
public SimpleBigDecimal Subtract(BigInteger b)
{
return new SimpleBigDecimal(bigInt.Subtract(b.ShiftLeft(scale)), scale);
}