本文整理匯總了C#中BigInteger.Remainder方法的典型用法代碼示例。如果您正苦於以下問題:C# BigInteger.Remainder方法的具體用法?C# BigInteger.Remainder怎麽用?C# BigInteger.Remainder使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類BigInteger
的用法示例。
在下文中一共展示了BigInteger.Remainder方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: ModReduce
protected virtual BigInteger ModReduce(BigInteger x)
{
if (r == null)
{
x = x.Mod(q);
}
else
{
bool negative = x.SignValue < 0;
if (negative)
{
x = x.Abs();
}
int qLen = q.BitLength;
if (r.SignValue > 0)
{
BigInteger qMod = BigInteger.One.ShiftLeft(qLen);
bool rIsOne = r.Equals(BigInteger.One);
while (x.BitLength > (qLen + 1))
{
BigInteger u = x.ShiftRight(qLen);
BigInteger v = x.Remainder(qMod);
if (!rIsOne)
{
u = u.Multiply(r);
}
x = u.Add(v);
}
}
else
{
int d = ((qLen - 1) & 31) + 1;
BigInteger mu = r.Negate();
BigInteger u = mu.Multiply(x.ShiftRight(qLen - d));
BigInteger quot = u.ShiftRight(qLen + d);
BigInteger v = quot.Multiply(q);
BigInteger bk1 = BigInteger.One.ShiftLeft(qLen + d);
v = v.Remainder(bk1);
x = x.Remainder(bk1);
x = x.Subtract(v);
if (x.SignValue < 0)
{
x = x.Add(bk1);
}
}
while (x.CompareTo(q) >= 0)
{
x = x.Subtract(q);
}
if (negative && x.SignValue != 0)
{
x = q.Subtract(x);
}
}
return x;
}
示例2: GenerateSafePrimes
/*
* Finds a pair of prime BigInteger's {p, q: p = 2q + 1}
*
* (see: Handbook of Applied Cryptography 4.86)
*/
internal static BigInteger[] GenerateSafePrimes(int size, int certainty, SecureRandom random)
{
BigInteger p, q;
int qLength = size - 1;
if (size <= 32)
{
for (;;)
{
q = new BigInteger(qLength, 2, random);
p = q.ShiftLeft(1).Add(BigInteger.One);
if (p.IsProbablePrime(certainty)
&& (certainty <= 2 || q.IsProbablePrime(certainty)))
break;
}
}
else
{
// Note: Modified from Java version for speed
for (;;)
{
q = new BigInteger(qLength, 0, random);
retry:
for (int i = 0; i < primeLists.Length; ++i)
{
int test = q.Remainder(PrimeProducts[i]).IntValue;
if (i == 0)
{
int rem3 = test % 3;
if (rem3 != 2)
{
int diff = 2 * rem3 + 2;
q = q.Add(BigInteger.ValueOf(diff));
test = (test + diff) % primeProducts[i];
}
}
int[] primeList = primeLists[i];
for (int j = 0; j < primeList.Length; ++j)
{
int prime = primeList[j];
int qRem = test % prime;
if (qRem == 0 || qRem == (prime >> 1))
{
q = q.Add(Six);
goto retry;
}
}
}
if (q.BitLength != qLength)
continue;
if (!q.RabinMillerTest(2, random))
continue;
p = q.ShiftLeft(1).Add(BigInteger.One);
if (p.RabinMillerTest(certainty, random)
&& (certainty <= 2 || q.RabinMillerTest(certainty - 2, random)))
break;
}
}
return new BigInteger[] { p, q };
}
示例3: ProcessBlock
public BigInteger ProcessBlock(
BigInteger input)
{
if (key is RsaPrivateCrtKeyParameters)
{
//
// we have the extra factors, use the Chinese Remainder Theorem - the author
// wishes to express his thanks to Dirk Bonekaemper at rtsffm.com for
// advice regarding the expression of this.
//
RsaPrivateCrtKeyParameters crtKey = (RsaPrivateCrtKeyParameters)key;
BigInteger p = crtKey.P;;
BigInteger q = crtKey.Q;
BigInteger dP = crtKey.DP;
BigInteger dQ = crtKey.DQ;
BigInteger qInv = crtKey.QInv;
BigInteger mP, mQ, h, m;
// mP = ((input Mod p) ^ dP)) Mod p
mP = (input.Remainder(p)).ModPow(dP, p);
// mQ = ((input Mod q) ^ dQ)) Mod q
mQ = (input.Remainder(q)).ModPow(dQ, q);
// h = qInv * (mP - mQ) Mod p
h = mP.Subtract(mQ);
h = h.Multiply(qInv);
h = h.Mod(p); // Mod (in Java) returns the positive residual
// m = h * q + mQ
m = h.Multiply(q);
m = m.Add(mQ);
return m;
}
return input.ModPow(key.Exponent, key.Modulus);
}
示例4: TestDiv
private void TestDiv(BigInteger i1, BigInteger i2)
{
BigInteger q = i1.Divide(i2);
BigInteger r = i1.Remainder(i2);
BigInteger remainder;
BigInteger quotient = i1.DivideAndRemainder(i2, out remainder);
Assert.IsTrue(q.Equals(quotient), "Divide and DivideAndRemainder do not agree");
Assert.IsTrue(r.Equals(remainder), "Remainder and DivideAndRemainder do not agree");
Assert.IsTrue(q.Sign != 0 || q.Equals(zero), "signum and equals(zero) do not agree on quotient");
Assert.IsTrue(r.Sign != 0 || r.Equals(zero), "signum and equals(zero) do not agree on remainder");
Assert.IsTrue(q.Sign == 0 || q.Sign == i1.Sign * i2.Sign, "wrong sign on quotient");
Assert.IsTrue(r.Sign == 0 || r.Sign == i1.Sign, "wrong sign on remainder");
Assert.IsTrue(r.Abs().CompareTo(i2.Abs()) < 0, "remainder out of range");
Assert.IsTrue(q.Abs().Add(one).Multiply(i2.Abs()).CompareTo(i1.Abs()) > 0, "quotient too small");
Assert.IsTrue(q.Abs().Multiply(i2.Abs()).CompareTo(i1.Abs()) <= 0, "quotient too large");
BigInteger p = q.Multiply(i2);
BigInteger a = p.Add(r);
Assert.IsTrue(a.Equals(i1), "(a/b)*b+(a%b) != a");
try {
BigInteger mod = i1.Mod(i2);
Assert.IsTrue(mod.Sign >= 0, "mod is negative");
Assert.IsTrue(mod.Abs().CompareTo(i2.Abs()) < 0, "mod out of range");
Assert.IsTrue(r.Sign < 0 || r.Equals(mod), "positive remainder == mod");
Assert.IsTrue(r.Sign >= 0 || r.Equals(mod.Subtract(i2)), "negative remainder == mod - divisor");
} catch (ArithmeticException e) {
Assert.IsTrue(i2.Sign <= 0, "mod fails on negative divisor only");
}
}
示例5: GcdBinary
/// <summary>
/// Return the greatest common divisor of X and Y
/// </summary>
///
/// <param name="X">Operand 1, must be greater than zero</param>
/// <param name="Y">Operand 2, must be greater than zero</param>
///
/// <returns>Returns <c>GCD(X, Y)</c></returns>
internal static BigInteger GcdBinary(BigInteger X, BigInteger Y)
{
// Divide both number the maximal possible times by 2 without rounding * gcd(2*a, 2*b) = 2 * gcd(a,b)
int lsb1 = X.LowestSetBit;
int lsb2 = Y.LowestSetBit;
int pow2Count = System.Math.Min(lsb1, lsb2);
BitLevel.InplaceShiftRight(X, lsb1);
BitLevel.InplaceShiftRight(Y, lsb2);
BigInteger swap;
// I want op2 > op1
if (X.CompareTo(Y) == BigInteger.GREATER)
{
swap = X;
X = Y;
Y = swap;
}
do
{ // INV: op2 >= op1 && both are odd unless op1 = 0
// Optimization for small operands (op2.bitLength() < 64) implies by INV (op1.bitLength() < 64)
if ((Y._numberLength == 1) || ((Y._numberLength == 2) && (Y._digits[1] > 0)))
{
Y = BigInteger.ValueOf(Division.GcdBinary(X.ToInt64(), Y.ToInt64()));
break;
}
// Implements one step of the Euclidean algorithm
// To reduce one operand if it's much smaller than the other one
if (Y._numberLength > X._numberLength * 1.2)
{
Y = Y.Remainder(X);
if (Y.Signum() != 0)
BitLevel.InplaceShiftRight(Y, Y.LowestSetBit);
}
else
{
// Use Knuth's algorithm of successive subtract and shifting
do
{
Elementary.InplaceSubtract(Y, X); // both are odd
BitLevel.InplaceShiftRight(Y, Y.LowestSetBit); // op2 is even
} while (Y.CompareTo(X) >= BigInteger.EQUALS);
}
// now op1 >= op2
swap = Y;
Y = X;
X = swap;
} while (X._sign != 0);
return Y.ShiftLeft(pow2Count);
}
示例6: IsSpp
public bool IsSpp(BigInteger n, BigInteger a)
{
BigInteger two = BigInteger.Parse("" + 2);
/* numbers less than 2 are not prime
*/
if (n.CompareTo(two) == -1)
return false;
/* 2 is prime
*/
if (n.CompareTo(two) == 0)
return true;
/* even numbers >2 are not prime
*/
if (n.Remainder(two).CompareTo(BigInteger.Zero) == 0)
return false;
/* q= n- 1 = d *2^s with d odd
*/
BigInteger q = n.Subtract(BigInteger.One);
int s = q.LowestSetBit;
BigInteger d = q.ShiftRight(s);
/* test whether a^d = 1 (mod n)
*/
if (a.ModPow(d, n).CompareTo(BigInteger.One) == 0)
return true;
/* test whether a^(d*2^r) = -1 (mod n), 0<=r<s
*/
for (int r = 0; r < s; r++) {
if (a.ModPow(d.ShiftLeft(r), n).CompareTo(q) == 0)
return true;
}
return false;
}
示例7: GrowTo
private void GrowTo(BigInteger n)
{
while (NMax.CompareTo(n) == -1) {
NMax = NMax.Add(BigInteger.One);
bool isp = true;
for (int p = 0; p < numbers.Count; p++) {
/*
* Test the list of known primes only up to sqrt(n)
*/
if (numbers[p].Multiply(numbers[p]).CompareTo(NMax) == 1)
break;
/*
* The next case means that the p'th number in the list of known primes divides
* nMax and nMax cannot be a prime.
*/
if (NMax.Remainder(numbers[p]).CompareTo(BigInteger.Zero) == 0) {
isp = false;
break;
}
}
if (isp)
numbers.Add(NMax);
}
}
示例8: GcdBinary
/**
* @param m a positive modulus
* Return the greatest common divisor of op1 and op2,
*
* @param op1
* must be greater than zero
* @param op2
* must be greater than zero
* @see BigInteger#gcd(BigInteger)
* @return {@code GCD(op1, op2)}
*/
public static BigInteger GcdBinary(BigInteger op1, BigInteger op2)
{
// PRE: (op1 > 0) and (op2 > 0)
/*
* Divide both number the maximal possible times by 2 without rounding
* gcd(2*a, 2*b) = 2 * gcd(a,b)
*/
int lsb1 = op1.LowestSetBit;
int lsb2 = op2.LowestSetBit;
int pow2Count = System.Math.Min(lsb1, lsb2);
BitLevel.InplaceShiftRight(op1, lsb1);
BitLevel.InplaceShiftRight(op2, lsb2);
BigInteger swap;
// I want op2 > op1
if (op1.CompareTo(op2) == BigInteger.GREATER) {
swap = op1;
op1 = op2;
op2 = swap;
}
do {
// INV: op2 >= op1 && both are odd unless op1 = 0
// Optimization for small operands
// (op2.bitLength() < 64) implies by INV (op1.bitLength() < 64)
if ((op2.numberLength == 1)
|| ((op2.numberLength == 2) && (op2.Digits[1] > 0))) {
op2 = BigInteger.ValueOf(Division.GcdBinary(op1.ToInt64(),
op2.ToInt64()));
break;
}
// Implements one step of the Euclidean algorithm
// To reduce one operand if it's much smaller than the other one
if (op2.numberLength > op1.numberLength*1.2) {
op2 = op2.Remainder(op1);
if (op2.Sign != 0)
BitLevel.InplaceShiftRight(op2, op2.LowestSetBit);
} else {
// Use Knuth's algorithm of successive subtract and shifting
do {
Elementary.inplaceSubtract(op2, op1); // both are odd
BitLevel.InplaceShiftRight(op2, op2.LowestSetBit); // op2 is even
} while (op2.CompareTo(op1) >= BigInteger.EQUALS);
}
// now op1 >= op2
swap = op2;
op2 = op1;
op1 = swap;
} while (op1.Sign != 0);
return op2.ShiftLeft(pow2Count);
}