当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


R BunchKaufman-class 密集束-考夫曼分解


R语言 BunchKaufman-class 位于 Matrix 包(package)。

说明

BunchKaufmanpBunchKaufman 表示 实对称矩阵 的 Bunch-Kaufman 分解,具有一般形式

其中 是对称的,由 对角块组成的块对角矩阵; row-permuted 单位上三角矩阵的乘积,每个单位上三角矩阵在对角线上方有 1 或 2 列的非零项; row-permuted 单位下三角矩阵的乘积,每个单位下三角矩阵在对角线下方有 1 或 2 列非零条目。

这些类将 因子的非零条目存储为长度为 ( BunchKaufman ) 或 ( pBunchKaufman ) 的密集格式的向量,它们各自是稀疏的,后者给出“packed”表示。

插槽

Dim , Dimnames

从虚拟类MatrixFactorization继承。

uplo

一个字符串,"U""L" ,指示使用因式分解对称矩阵的哪个三角形(上或下)来计算因式分解,以及如何对 x 槽进行分区。

x

长度为 n*n ( BunchKaufman ) 或 n*(n+1)/2 ( pBunchKaufman ) 的数值向量,其中 n=Dim[1] 。表示的细节由 LAPACK 例程 dsytrfdsptrf 的手册指定。

perm

长度为 n=Dim[1] 的整数向量,指定行和列交换,如 LAPACK 例程 dsytrfdsptrf 手册中所述。

扩展

直接类 BunchKaufmanFactorization 。类 MatrixFactorization ,按类 BunchKaufmanFactorization ,距离 2。

实例化

对象可以通过 new("BunchKaufman", ...)new("pBunchKaufman", ...) 形式的调用直接生成,但它们更通常作为继承自 dsyMatrixdspMatrixxBunchKaufman(x) 值获取。

方法

coerce

signature(from = "BunchKaufman", to = "dtrMatrix") :返回 dtrMatrix ,可用于检查因式分解的内部表示;看注释'。

coerce

signature(from = "pBunchKaufman", to = "dtpMatrix") :返回 dtpMatrix ,可用于检查因式分解的内部表示;看注释'。

determinant

signature(from = "p?BunchKaufman", logarithm = "logical") :计算因式分解矩阵 的行列式或其对数。

expand1

signature(x = "p?BunchKaufman") :参见expand1-methods

expand2

signature(x = "p?BunchKaufman") :参见expand2-methods

solve

signature(a = "p?BunchKaufman", b = .) :参见solve-methods

注意

Matrix < 1.6-0 中,类 BunchKaufman 扩展 dtrMatrix 和类 pBunchKaufman 扩展 dtpMatrix ,反映了分解的内部表示本质上是三角形的事实:有 “parameters” 和这些可以系统地排列形成 三角矩阵。 Matrix 1.6-0 删除了这些扩展,以便不再从 dtrMatrixdtpMatrix 继承方法。此类方法的可用性给人一种错误的印象,即 BunchKaufmanpBunchKaufman 代表一个(奇异)矩阵,而实际上它们代表一组有序的矩阵因子。

强制 as(., "dtrMatrix")as(., "dtpMatrix") 是为了解这些注意事项的用户提供的。

例子


showClass("BunchKaufman")
set.seed(1)

n <- 6L
(A <- forceSymmetric(Matrix(rnorm(n * n), n, n)))

## With dimnames, to see that they are propagated :
dimnames(A) <- rep.int(list(paste0("x", seq_len(n))), 2L)

(bk.A <- BunchKaufman(A))
str(e.bk.A <- expand2(bk.A, complete = FALSE), max.level = 2L)
str(E.bk.A <- expand2(bk.A, complete =  TRUE), max.level = 2L)

## Underlying LAPACK representation
(m.bk.A <- as(bk.A, "dtrMatrix"))
stopifnot(identical(as(m.bk.A, "matrix"), `dim<-`(bk.A@x, bk.A@Dim)))

## Number of factors is 2*b+1, b <= n, which can be nontrivial ...
(b <- (length(E.bk.A) - 1L) %/% 2L)

ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)

## A ~ U DU U', U := prod(Pk Uk) in floating point
stopifnot(exprs = {
    identical(names(e.bk.A), c("U", "DU", "U."))
    identical(e.bk.A[["U" ]], Reduce(`%*%`, E.bk.A[seq_len(b)]))
    identical(e.bk.A[["U."]], t(e.bk.A[["U"]]))
    ae1(A, with(e.bk.A, U %*% DU %*% U.))
})

## Factorization handled as factorized matrix
b <- rnorm(n)
stopifnot(identical(det(A), det(bk.A)),
          identical(solve(A, b), solve(bk.A, b)))

参考

The LAPACK source code, including documentation; see https://netlib.org/lapack/double/dsytrf.f and https://netlib.org/lapack/double/dsptrf.f.

Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University Press. doi:10.56021/9781421407944

也可以看看

dsyMatrix 及其打包对应项。

通用函数 BunchKaufmanexpand1expand2

相关用法


注:本文由纯净天空筛选整理自R-devel大神的英文原创作品 Dense Bunch-Kaufman Factorizations。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。