当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


Python SciPy ndimage.spline_filter1d()用法及代码示例


该方法用于计算沿给定轴的一维样条滤波器。这些由样条滤波器过滤。

用法:scipy.ndimage.spline_filter1d(input, order=3, axis=-1, output=<class ‘numpy.float64’>)

参数

input:数组-输入数组

order:int-样条曲线的顺序,默认为3。



axis:int,-样条线过滤器沿其应用的轴。默认为最后一个轴。

output:ndarray-放置输出的数组,或者返回的数组的dtype。默认值为numpy.float64。

范例1:

Python3

# importing spline filter with one dimension. 
from scipy.ndimage import spline_filter1d 
  
# importing matplot library for visualiation 
import matplotlib.pyplot as plt 
  
# importing munpy module 
import numpy as np 
  
# creating an image 
geek_image = np.eye(80) 
  
# returns an image array format 
geek_image[40,:] = 1.0
print(geek_image)

输出:

范例2:

Python3

# importing spline filter with one dimension. 
from scipy.ndimage import spline_filter1d 
  
# importing matplot library for visualiation 
import matplotlib.pyplot as plt 
  
# importing munpy module 
import numpy as np 
  
# creating an image 
geek_image = np.eye(80) 
  
geek_image[40,:] = 1.0
  
# in axis=0 
axis_0 = spline_filter1d(geek_image, axis=0) 
  
# in axis=1 
axis_1 = spline_filter1d(geek_image, axis=1) 
  
f, ax = plt.subplots(1, 3, sharex=True) 
  
for ind, data in enumerate([[geek_image, "geek_image original"], 
                            [axis_0, "spline filter in axis 0"], 
                            [axis_1, "spline filter in axis 1"]]):
    ax[ind].imshow(data[0], cmap='gray_r') 
      
    # giving title 
    ax[ind].set_title(data[1]) 
  
    # orientation layout of our image 
plt.tight_layout() 
  
# to show image 
plt.show()

输出:


相关用法


注:本文由纯净天空筛选整理自sravankumar8128大神的英文原创作品 Python SciPy – ndimage.spline_filter1d() function。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。