本文整理汇总了Python中pandas.io.data.DataReader.rename方法的典型用法代码示例。如果您正苦于以下问题:Python DataReader.rename方法的具体用法?Python DataReader.rename怎么用?Python DataReader.rename使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pandas.io.data.DataReader
的用法示例。
在下文中一共展示了DataReader.rename方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: download_ohlc
# 需要导入模块: from pandas.io.data import DataReader [as 别名]
# 或者: from pandas.io.data.DataReader import rename [as 别名]
def download_ohlc(sector_tickers, start, end):
sector_ohlc = {}
for sector, tickers in sector_tickers.iteritems():
print 'Downloading data from Yahoo for %s sector' % sector
data = DataReader(tickers, 'yahoo', start, end)
for item in ['Open', 'High', 'Low']:
data[item] = data[item] * data['Adj Close'] / data['Close']
data.rename(items={'Open': 'open', 'High': 'high', 'Low': 'low',
'Adj Close': 'close', 'Volume': 'volume'},
inplace=True)
data.drop(['Close'], inplace=True)
sector_ohlc[sector] = data
print 'Finished downloading data'
return sector_ohlc
示例2: ts
# 需要导入模块: from pandas.io.data import DataReader [as 别名]
# 或者: from pandas.io.data.DataReader import rename [as 别名]
def ts(self, symbol):
parse = self.parsesymbol(symbol)
df = DataReader(parse['eq'], parse['proto'],start=datetime.datetime(1950,1,1))
df = df.rename(columns=lambda x: '_'.join(x.split()).lower()) # Need for Adj Close :(
#print df.columns
ts = df[parse['hlocv']]
ts.index = map(lambda x: x.date(), ts.index)
ts.name = parse['eq']
if '@' in symbol:
ts.name += '@%s' % (parse['hlocv'])
return ts
示例3: import_data_yahoo_to_files
# 需要导入模块: from pandas.io.data import DataReader [as 别名]
# 或者: from pandas.io.data.DataReader import rename [as 别名]
def import_data_yahoo_to_files( list_symbols,path,startdate):
list_error=[]
logger.info("importing from "+str(startdate))
for symbol in list_symbols:
try :
prices_df = DataReader(symbol, "yahoo", startdate)
count_newdata = len(prices_df)
print symbol , " ", count_newdata
if(count_newdata <=0):
raise Exception("NO DATA for Dates for %s"%symbol)
prices_df = prices_df.rename(columns={'Date': 'date', 'Open': 'open', 'High': 'high',
'Low': 'low', 'Close': 'actualclose', 'Adj Close': 'close',
'Volume': 'volume', 'Symbol': 'symbol'})
prices_df['symbol'] = symbol
prices_df['symbol'] = prices_df.apply(lambda x: x['symbol'].replace('\r','').upper(), axis=1 )
prices_df.to_csv(path + "/" + symbol + '.csv')
except Exception as ex:
logger.error(ex)
list_error.append(symbol)
logger.error(traceback.format_exc())
示例4: DataReader
# 需要导入模块: from pandas.io.data import DataReader [as 别名]
# 或者: from pandas.io.data.DataReader import rename [as 别名]
cat = df['subcat']
t = df[(cat == 22.0) | (cat == 24.0) | (cat == 25.0)]
# To adjust for population
try:
popn = DataReader('CNP16OV', data_source='fred', start='1970')
popn = popn.resample('A')
gdp = DataReader('GDPC1', data_source='fred',
start='1974').resample('A')
except IOError:
print('No Connection.')
patents = df.groupby('appyear')['patent'].count().ix[1975:2002]
gdp = gdp.ix['1975':'2002']
patents.index = gdp.index
gdp['patents'] = patents
gdp.rename(columns={'GDPC1': 'gdp'})
fig = plt.figure()
ax = fig.add_subplot(111)
ax = gdp.plot(ax=ax, secondary_y=['patents'], grid=True)
ax.set_ylabel('Billions of Chained 2005 Dollars')
ax.set_xlabel('')
plt.savefig('gdp_app_all.png', dpi=300)
patents = t.groupby('appyear')['patent'].count().ix[1975:2002]
gdp = gdp.ix['1975':'2002']
patents.index = gdp.index
gdp['patents'] = patents
gdp.rename(columns={'GDPC1': 'gdp'})
fig = plt.figure()
ax = fig.add_subplot(111)
ax = gdp.plot(ax=ax, secondary_y=['patents'], grid=True)
示例5: DataReader
# 需要导入模块: from pandas.io.data import DataReader [as 别名]
# 或者: from pandas.io.data.DataReader import rename [as 别名]
import matplotlib.pyplot as plt
from datetime import datetime
from pandas.io.data import DataReader
code_names = {
'005930.KS':'Samsung Elec', '005380.KS':'Hyundai Motor','000660.KS':'SK Hynix', '015760.KS':'kor elect',
'012330.KS':'Hyundai Mobis', '005490.KS':'POSCO', '017670.KS':'SK tele','^KS11':'KOSPI',
'035420.KS':'NAVER','055550.KS':'sinhan','032830.KS':'samsung life', '000270.KS':'Kia', '090430.KS':'AmoreF',
'090430.KS':'LG chemi','105560.KS':'KB','000810.KS':'samsung fire', '034220.KS':'LG display', '033780.KS':'KT&G',
'051900.KS':'LG health','003550.KS':'LG','034730.KS':'SK cnc', '066570.KS':'LG elec', '002790.KS':'AmoreG',
'009540.KS':'Samsung shi','006400.KS':'Samsung SDI','086280.KS':'Hy globis', '096770.KS':'SK ino', '000830.KS':'Samsung c&t'}
df = DataReader(code_names.keys(), 'yahoo', start='2014-03-01', end='2015-02-28')
df = df['Adj Close']
df = df.rename(columns=code_names)
changes = df.pct_change()
chg_corr = changes.corr()
chg_corr
plt.figure(figsize=(16,8))
plt.scatter(changes.mean(), changes.std())
plt.xlabel('returns')
plt.ylabel('risk')
for label, x, y in zip(changes.columns, changes.mean(), changes.std()):
plt.annotate( label,xy=(x, y), xytext=(30, -30),
textcoords = 'offset points', ha = 'right', va = 'bottom',
bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 0.5),
arrowprops = dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0'))
示例6: dict
# 需要导入模块: from pandas.io.data import DataReader [as 别名]
# 或者: from pandas.io.data.DataReader import rename [as 别名]
# <codecell>
series = dict(jobs = "PAYEMS",
income = "PI",
prod = "INDPRO",
cons = "PCEC96",
prices = "CPIAUCSL")
# <codecell>
try:
indicators = []
for variable in series:
data = DataReader(series[variable], "fred", start="2000-10-1")
data.rename(columns={series[variable] : variable}, inplace=True)
indicators.append(data)
indicators = pandas.concat(indicators, axis=1)
indicators.to_csv("/home/skipper/school/talks/538model/tmp_indicators_full.csv")
except: # probably not online
indicators = pandas.read_csv("/home/skipper/school/talks/538model/tmp_indicators_full.csv",
parse_dates=True)
indicators.set_index("DATE", inplace=True)
# why doesn't it do this automaticall?
indicators.index = pandas.DatetimeIndex(indicators.index)
# <markdowncell>
# For stock variables, just compute annualized quarterly growth rates (end - beginning)/beginning * 400 and average.
# <codecell>
示例7: Equity
# 需要导入模块: from pandas.io.data import DataReader [as 别名]
# 或者: from pandas.io.data.DataReader import rename [as 别名]
class Equity(object):
"""
An Equity object provides an interface to Share Price Data for a specified Ticker Code.
It uses pandas (DataReader and DataFrame) and SQLite as a local data store.
Use importData() to update the SQLite data from Yahoo (adjusting as necessary) and use dataFrame() to get at the
adjusted data.
"""
def __init__(self, tickerCode):
"""
Constructor.
There isn't much to see here. It just makes a note of the Ticker Code.
:param tickerCode: Ticker Code.
"""
Logger.log(logging.DEBUG, "Log Object Creation", {"scope":__name__, "arguments":" ".join({tickerCode})})
self._tickerCode = tickerCode
def importData(self):
"""
Import (New) Data from Yahoo.
"""
start = self._getLatestDate()
end = self._getTodaysDate()
Logger.log(logging.INFO, "Loading Data", {"scope":__name__, "tickerCode":self._tickerCode, "start":str(start), "end":str(end)})
self._data = DataReader(self._tickerCode, "yahoo", start, end)
self._data['Code'] = self._tickerCode
for item in ['Open', 'High', 'Low']:
self._data[item] = self._data[item] * self._data['Adj Close'] / self._data['Close']
self._data.drop('Close', axis=1, inplace=True)
self._data.rename(columns={'Adj Close':'Close'}, inplace=True)
self._data['Volume'] = self._data['Volume'].astype(float)
connection = sqlite3.connect(pyswing.database.pySwingDatabase)
query = "insert or replace into Equities (Date, Open, High, Low, Volume, Close, Code) values (?,?,?,?,?,?,?)"
connection.executemany(query, self._data.to_records(index=True))
connection.commit()
connection.close()
def dataFrame(self):
connection = sqlite3.connect(pyswing.database.pySwingDatabase)
query = "select * from Equities where Code = '%s'" % (self._tickerCode)
equityData = read_sql_query(query, connection, 'Date')
connection.close()
return equityData
def _getLatestDate(self):
connection = sqlite3.connect(pyswing.database.pySwingDatabase)
query = "select max(Date) from Equities where Code = '%s'" % (self._tickerCode)
cursor = connection.cursor()
cursor.execute(query)
dateString = cursor.fetchone()[0]
connection.close()
date = pyswing.constants.pySwingStartDate
if dateString:
date = datetime.datetime.strptime(dateString, "%Y-%m-%d %H:%M:%S")
return date
def _getTodaysDate(self):
return datetime.datetime.now()
示例8: dict
# 需要导入模块: from pandas.io.data import DataReader [as 别名]
# 或者: from pandas.io.data.DataReader import rename [as 别名]
# <codecell>
series = dict(jobs = "PAYEMS",
income = "PI",
prod = "INDPRO",
cons = "PCEC96",
prices = "CPIAUCSL")
# <codecell>
indicators = []
for variable in series:
data = DataReader(series[variable], "fred", start="2010-1-1")
# renaming not necessary in master
data.rename(columns={"VALUE" : variable}, inplace=True)
indicators.append(data)
# <codecell>
indicators = pandas.concat(indicators, axis=1)
# <codecell>
indicators
# <headingcell level=3>
# Polling Data
# <markdowncell>