当前位置: 首页>>代码示例>>Python>>正文


Python DataReader.iterrows方法代码示例

本文整理汇总了Python中pandas.io.data.DataReader.iterrows方法的典型用法代码示例。如果您正苦于以下问题:Python DataReader.iterrows方法的具体用法?Python DataReader.iterrows怎么用?Python DataReader.iterrows使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pandas.io.data.DataReader的用法示例。


在下文中一共展示了DataReader.iterrows方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: getTimewindowStockPrice

# 需要导入模块: from pandas.io.data import DataReader [as 别名]
# 或者: from pandas.io.data.DataReader import iterrows [as 别名]
def getTimewindowStockPrice(ticker):
    timewindowStockPrice = {}#key: year; value: weekly price
    stockDF = DataReader(ticker,  "google", "2009-01-01", datetime.today().date())
#     print stockDF
    for idx, row in stockDF.iterrows():
#         print row[0], row['Close']
#         print datetime.fromtimestamp(idx)
#         print str(idx)
        dt = dateutil.parser.parse(str(idx)).date()
        year = dt.isocalendar()[0]
        week = dt.isocalendar()[1]
        price = row['Close']
        print year, week, price
        if year not in timewindowStockPrice:
            timewindowStockPrice[year] = {}
        if week not in timewindowStockPrice[year]:
            timewindowStockPrice[year][week] = []
#         print row['Close']
        timewindowStockPrice[year][week].append(price)
        
    #normalized weekly price
    for year in timewindowStockPrice.keys():
        for week in timewindowStockPrice[year].keys():
            timewindowStockPrice[year][week] = scipy.mean(timewindowStockPrice[year][week])
    
#     for year in timewindowStockPrice.keys():
#         print timewindowStockPrice[year]
    return timewindowStockPrice
开发者ID:lingandcs,项目名称:StockBigData,代码行数:30,代码来源:DataProcessor.py

示例2: refreshYahooDatabase

# 需要导入模块: from pandas.io.data import DataReader [as 别名]
# 或者: from pandas.io.data.DataReader import iterrows [as 别名]
def refreshYahooDatabase(db):
    
    rs = yahoo.yahooRecordset(db)
    ts = timeseries.timeseriesRecordset(db)
    
    # step 1: get the yahoo index end date
    idx = rs.select('*')
    
    for i in idx:
        
        try:
            r = ts.getLastDate(i['id'])
            
            start = r[0]['max_date']
            
            data = pd.DataFrame()
            
            if start != None:
                start = start + dt.timedelta(days=1)
                
                data = DataReader(  str(i['key']), 'yahoo', start)
            else:
                data = DataReader(  str(i['key']), 'yahoo')
            
            # insert new data
            add = []
            
            for index, row in data.iterrows():
                add.append((i['id'], index, row[i['field']]))
                
            ts.insert(add)
            
        except Exception as e:
            print('error processing index ' + str(i['key'] \
                + '/' + str(i['field']) + '\n'))
开发者ID:vermosen,项目名称:aletheiaPy,代码行数:37,代码来源:main.py

示例3: Indicator1

# 需要导入模块: from pandas.io.data import DataReader [as 别名]
# 或者: from pandas.io.data.DataReader import iterrows [as 别名]
class Indicator1():
    def __init__(self, indicator, stock_name, start_date, end_date, buy_value, sell_value):
        if not isinstance(stock_name, str):
            raise TypeError("Sorry. 'Stock Name' must be string")
        self.stock = DataReader(stock_name, "yahoo", start_date, end_date)
        self.stock['returnValue'] = 'NaN'
        self.stock['returnValue'] = 'NaN'

        high_array = []
        for index, row in self.stock.iterrows():
            high_array.append(row['High'])
        high_nparray = numpy.asarray(high_array)

        low_array = []
        for index, row in self.stock.iterrows():
            low_array.append(row['Low'])
        low_nparray = numpy.asarray(low_array)

        close_array = []
        for index, row in self.stock.iterrows():
            close_array.append(row['Close'])
        close_nparray = numpy.asarray(close_array)
        real = getattr(talib, indicator)(high_nparray, low_nparray, close_nparray, timeperiod=14)

        self.stock['indicator'] = real
        self.stock['indicator_trigger'] = "NaN"
        count = 0
        flag = False
        for index, row in self.stock.iterrows():
            if count < len(self.stock.index):
                if float(row['indicator']) < buy_value and (not flag):
                    self.stock['indicator_trigger'][count] = "Buy"
                    flag = True
                elif float(row['indicator']) > sell_value and flag:
                    self.stock['indicator_trigger'][count] = "Sell"
                    flag = False
            count += 1
开发者ID:tejesh95,项目名称:prod,代码行数:39,代码来源:indicators_rule.py


注:本文中的pandas.io.data.DataReader.iterrows方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。