当前位置: 首页>>代码示例>>Python>>正文


Python NeuralNet.save_weights_to方法代码示例

本文整理汇总了Python中nolearn.lasagne.NeuralNet.save_weights_to方法的典型用法代码示例。如果您正苦于以下问题:Python NeuralNet.save_weights_to方法的具体用法?Python NeuralNet.save_weights_to怎么用?Python NeuralNet.save_weights_to使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在nolearn.lasagne.NeuralNet的用法示例。


在下文中一共展示了NeuralNet.save_weights_to方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: GlorotUniform

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import save_weights_to [as 别名]
  dropout_p=0.5,
  output_num_units=num_classes, output_nonlinearity=lasagne.nonlinearities.softmax,
  output_W = GlorotUniform(gain = 1.0),

  # ----------------------- ConvNet Params -------------------------------------------
  update = nesterov_momentum,
  update_learning_rate = learning_rate,
  update_momentum = momentum,
  max_epochs = num_epochs,
  verbose = 1,

)

tic = time.time()
for i in range(12):
  convNet.fit(dataset['X_train'], dataset['Y_train'])
  fl = './model1/saved_model_data' + str(i+1) + '.npz'
  convNet.save_weights_to(fl)
  print 'Model saved to file :- ', fl
toc = time.time()

fl = './model1/saved_model_data' + str(6) + '.npz'
convNet.load_weights_from(fl)
y_pred = convNet.predict(dataset['X_test'])
print classification_report(Y_test, y_pred)
print accuracy_score(Y_test, y_pred)
print 'Time taken to train the data :- ', toc-tic, 'seconds'


开发者ID:PankajKataria,项目名称:BanglaReco,代码行数:29,代码来源:solution.py

示例2: open

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import save_weights_to [as 别名]
    # output
    output_nonlinearity=lasagne.nonlinearities.softmax,
    output_num_units=2,
    # optimization method params
    update=nesterov_momentum,
    update_learning_rate=0.007,
    update_momentum=0.9,
    max_epochs=16,
    verbose=1,
    )






"""Loading data and training Lasagne network using nolearn"""

trainImg = np.load('trainImg_stage1.npy')
trainVal2 = np.load('trainVal_stage1.npy')
trainImg2 = trainImg.astype(np.float32).swapaxes(1, 3)
trainVal2 = trainVal2.astype(np.uint8)

print "Training Classifier: 70/30 split"
nn.fit(trainImg2, trainVal2)


print "Saving Classifier"
pickle.dump(nn, open("nn_stage1.pkl", "wb"))
nn.save_weights_to('weights_stage1')
开发者ID:nikcheerla,项目名称:TCGA-Mitosis,代码行数:32,代码来源:train_net_stage1.py

示例3:

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import save_weights_to [as 别名]
                     output_nonlinearity=softmax,
                     update=nesterov_momentum,
                     update_learning_rate=0.01,
                     update_momentum=0.9,
                     eval_size=0.2,
                     verbose=1,
                     max_epochs=200)
    
    print "fitting nn model.."
    net0.fit(X_train, y_train)

    print "predicting probabilities using nn model..."
    proba = net0.predict_proba(X_test)
    ll.append(calc_ll_from_proba(proba, y_test))

    print metrics.confusion_matrix(
        y_test.astype(int), np.argmax(proba, axis=1).astype(int))

    print "logloss: ", ll[ncv]
    
    print "saving nn model..."
    net0.save_weights_to('weights/nn_%d.pkl' % ncv)
    net0 = None
    
    ncv += 1

ll = np.array(ll)
print "logloss: ", ll
    
# make_submission(net0, X_test, ids, encoder)
开发者ID:yskmt,项目名称:kaggle-otto,代码行数:32,代码来源:nn_kfcv.py

示例4: open

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import save_weights_to [as 别名]
    verbose=1,
    )
ae.fit(X_train, X_out)
print
###  expect training / val error of about 0.087 with these parameters
###  if your GPU not fast enough, reduce the number of filters in the conv/deconv step

# <codecell>

import pickle
import sys
sys.setrecursionlimit(10000)

pickle.dump(ae, open('mnist/conv_ae.pkl','w'))
#ae = pickle.load(open('mnist/conv_ae.pkl','r'))
ae.save_weights_to('mnist/conv_ae.np')

# <codecell>

X_train_pred = ae.predict(X_train).reshape(-1, 28, 28) * sigma + mu
X_pred = np.rint(X_train_pred).astype(int)
X_pred = np.clip(X_pred, a_min = 0, a_max = 255)
X_pred = X_pred.astype('uint8')
print X_pred.shape , X.shape

# <codecell>

###  show random inputs / outputs side by side

def get_picture_array(X, index):
    array = X[index].reshape(28,28)
开发者ID:GaganNarula,项目名称:convolutional_autoencoder,代码行数:33,代码来源:mnist_conv_autoencode.py

示例5: open

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import save_weights_to [as 别名]
    verbose=1,
    )
ae.fit(X_train, X_out)
print
###  expect training / val error of about 0.087 with these parameters
###  if your GPU not fast enough, reduce the number of filters in the conv/deconv step

# <codecell>

import pickle
import sys
sys.setrecursionlimit(10000)

pickle.dump(ae, open('ish/conv_ae.pkl','w'))
#ae = pickle.load(open('mnist/conv_ae.pkl','r'))
ae.save_weights_to('ish/conv_ae.np')

# <codecell>

X_train_pred = ae.predict(X_train).reshape(-1, IMAGE_WIDTH, IMAGE_HEIGHT) * sigma + mu
X_pred = np.rint(X_train_pred).astype(int)
X_pred = np.clip(X_pred, a_min = 0, a_max = 255)
X_pred = X_pred.astype('uint8')
print X_pred.shape , X.shape

# <codecell>

###  show random inputs / outputs side by side

def get_picture_array(X, index):
    array = X[index].reshape(IMAGE_WIDTH,IMAGE_HEIGHT)
开发者ID:idocoh,项目名称:ISH_Lasagne,代码行数:33,代码来源:ish_conv_autoencode.py

示例6: createCSAE

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import save_weights_to [as 别名]

#.........这里部分代码省略.........
            conv41_num_filters=layers_size[3], conv41_filter_size=filter_4, conv41_nonlinearity=activation,
            # conv41_border_mode="same",
            conv41_pad="same",
            # conv42_num_filters=layers_size[3], conv42_filter_size=filter_4, conv42_nonlinearity=activation,
            # # conv42_border_mode="same",
            # conv42_pad="same",

            unpool2_ds=(2, 2),

            conv5_num_filters=layers_size[4], conv5_filter_size=filter_5, conv5_nonlinearity=activation,
            # conv5_border_mode="same",
            conv5_pad="same",
            conv51_num_filters=layers_size[4], conv51_filter_size=filter_5, conv51_nonlinearity=activation,
            # conv51_border_mode="same",
            conv51_pad="same",
            # conv52_num_filters=layers_size[4], conv52_filter_size=filter_5, conv52_nonlinearity=activation,
            # # conv52_border_mode="same",
            # conv52_pad="same",

            conv6_num_filters=1, conv6_filter_size=filter_6, conv6_nonlinearity=last_layer_activation,
            # conv6_border_mode="same",
            conv6_pad="same",

            output_layer_shape=(([0], -1)),

            update_learning_rate=learning_rate,
            update_momentum=update_momentum,
            update=nesterov_momentum,
            train_split=TrainSplit(eval_size=train_valid_split),
            batch_iterator_train=FlipBatchIterator(batch_size=batch_size) if flip_batch else BatchIterator(batch_size=batch_size),
            regression=True,
            max_epochs=epochs,
            verbose=1,
            hiddenLayer_to_output=-9)

        cnn.fit(X_train, X_out)

        try:
            pickle.dump(cnn, open(folder_path + 'conv_ae.pkl', 'w'))
            # cnn = pickle.load(open(folder_path + 'conv_ae.pkl','r'))
            cnn.save_weights_to(folder_path + 'conv_ae.np')
        except:
            print ("Could not pickle cnn")

        X_pred = cnn.predict(X_train).reshape(-1, input_height, input_width) # * sigma + mu
        # # X_pred = np.rint(X_pred).astype(int)
        # # X_pred = np.clip(X_pred, a_min=0, a_max=255)
        # # X_pred = X_pred.astype('uint8')
        #
        # try:
        #     trian_last_hiddenLayer = cnn.output_hiddenLayer(X_train)
        #     # test_last_hiddenLayer = cnn.output_hiddenLayer(test_x)
        #     pickle.dump(trian_last_hiddenLayer, open(folder_path + 'encode.pkl', 'w'))
        # except:
        #     print "Could not save encoded images"

        print ("Saving some images....")
        for i in range(10):
            index = np.random.randint(train_x.shape[0])
            print (index)

            def get_picture_array(X, index):
                array = np.rint(X[index] * 256).astype(np.int).reshape(input_height, input_width)
                array = np.clip(array, a_min=0, a_max=255)
                return array.repeat(4, axis=0).repeat(4, axis=1).astype(np.uint8())

            original_image = Image.fromarray(get_picture_array(X_out, index))
            # original_image.save(folder_path + 'original' + str(index) + '.png', format="PNG")
            #
            # array = np.rint(trian_last_hiddenLayer[index] * 256).astype(np.int).reshape(input_height/2, input_width/2)
            # array = np.clip(array, a_min=0, a_max=255)
            # encode_image = Image.fromarray(array.repeat(4, axis=0).repeat(4, axis=1).astype(np.uint8()))
            # encode_image.save(folder_path + 'encode' + str(index) + '.png', format="PNG")

            new_size = (original_image.size[0] * 3, original_image.size[1])
            new_im = Image.new('L', new_size)
            new_im.paste(original_image, (0, 0))
            pred_image = Image.fromarray(get_picture_array(X_pred, index))
            # pred_image.save(folder_path + 'pred' + str(index) + '.png', format="PNG")
            new_im.paste(pred_image, (original_image.size[0], 0))

            noise_image = Image.fromarray(get_picture_array(X_train, index))
            new_im.paste(noise_image, (original_image.size[0]*2, 0))
            new_im.save(folder_path+'origin_prediction_noise-'+str(index)+'.png', format="PNG")

            # diff = ImageChops.difference(original_image, pred_image)
            # diff = diff.convert('L')
            # diff.save(folder_path + 'diff' + str(index) + '.png', format="PNG")

            # plt.imshow(new_im)
            # new_size = (original_image.size[0] * 2, original_image.size[1])
            # new_im = Image.new('L', new_size)
            # new_im.paste(original_image, (0, 0))
            # pred_image = Image.fromarray(get_picture_array(X_train, index))
            # # pred_image.save(folder_path + 'noisyInput' + str(index) + '.png', format="PNG")
            # new_im.paste(pred_image, (original_image.size[0], 0))
            # new_im.save(folder_path+'origin_VS_noise-'+str(index)+'.png', format="PNG")
            # plt.imshow(new_im)

        return cnn
开发者ID:idocoh,项目名称:ISH_Lasagne,代码行数:104,代码来源:articleCat_DAE_4.py


注:本文中的nolearn.lasagne.NeuralNet.save_weights_to方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。