当前位置: 首页>>代码示例>>Python>>正文


Python NeuralNet.X_valid方法代码示例

本文整理汇总了Python中nolearn.lasagne.NeuralNet.X_valid方法的典型用法代码示例。如果您正苦于以下问题:Python NeuralNet.X_valid方法的具体用法?Python NeuralNet.X_valid怎么用?Python NeuralNet.X_valid使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在nolearn.lasagne.NeuralNet的用法示例。


在下文中一共展示了NeuralNet.X_valid方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: define_net

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import X_valid [as 别名]

#.........这里部分代码省略.........

    test_iterator = ParallelBatchIterator(keys, params.BATCH_SIZE, std, mean, y_all = y)

    if params.REGRESSION:
        y = util.float32(y)
        y = y[:, np.newaxis]

    if 'gpu' in theano.config.device:
        # Half of coma does not support cuDNN, check whether we can use it on this node
        # If not, use cuda_convnet bindings
        from theano.sandbox.cuda.dnn import dnn_available
        if dnn_available():
            from lasagne.layers import dnn
            Conv2DLayer = dnn.Conv2DDNNLayer
            MaxPool2DLayer = dnn.MaxPool2DDNNLayer
        else:
            from lasagne.layers import cuda_convnet
            Conv2DLayer = cuda_convnet.Conv2DCCLayer
            MaxPool2DLayer = cuda_convnet.MaxPool2DCCLayer
    else:
        Conv2DLayer = layers.Conv2DLayer
        MaxPool2DLayer = layers.MaxPool2DLayer

    Maxout = layers.pool.FeaturePoolLayer

    net = NeuralNet(
        layers=[
            ('input', layers.InputLayer),
            ('conv0', Conv2DLayer),
            ('pool0', MaxPool2DLayer),
            ('conv1', Conv2DLayer),
            ('pool1', MaxPool2DLayer),
            ('conv2', Conv2DLayer),
            ('pool2', MaxPool2DLayer),
            ('conv3', Conv2DLayer),
            ('pool3', MaxPool2DLayer),
            ('conv4', Conv2DLayer),
            ('pool4', MaxPool2DLayer),
            ('dropouthidden1', layers.DropoutLayer),
            ('hidden1', layers.DenseLayer),
            ('maxout1', Maxout),
            ('dropouthidden2', layers.DropoutLayer),
            ('hidden2', layers.DenseLayer),
            ('maxout2', Maxout),
            ('dropouthidden3', layers.DropoutLayer),
            ('output', layers.DenseLayer),
        ],

        input_shape=(None, params.CHANNELS, params.PIXELS, params.PIXELS),

        conv0_num_filters=32, conv0_filter_size=(5, 5), conv0_stride=(2, 2), pool0_pool_size=(2, 2), pool0_stride=(2, 2),
        conv1_num_filters=64, conv1_filter_size=(5, 5), conv1_border_mode = 'same', pool1_pool_size=(2, 2), pool1_stride=(2, 2),
        conv2_num_filters=128, conv2_filter_size=(3, 3), conv2_border_mode = 'same', pool2_pool_size=(2, 2), pool2_stride=(2, 2),
        conv3_num_filters=192, conv3_filter_size=(3, 3), conv3_border_mode = 'same', pool3_pool_size=(2, 2), pool3_stride=(2, 2),
        conv4_num_filters=256, conv4_filter_size=(3, 3), conv4_border_mode = 'same', pool4_pool_size=(2, 2), pool4_stride=(2, 2),

        hidden1_num_units=1024,
        hidden2_num_units=1024,

        dropouthidden1_p=0.5,
        dropouthidden2_p=0.5,
        dropouthidden3_p=0.5,

        maxout1_pool_size=2,
        maxout2_pool_size=2,

        output_num_units=1 if params.REGRESSION else 5,
        output_nonlinearity=None if params.REGRESSION else nonlinearities.softmax,

        update_learning_rate=theano.shared(util.float32(params.START_LEARNING_RATE)),
        update_momentum=theano.shared(util.float32(params.MOMENTUM)),
        custom_score=('kappa', quadratic_kappa),

        regression=params.REGRESSION,
        batch_iterator_train=train_iterator,
        batch_iterator_test=test_iterator,
        on_epoch_finished=[
            AdjustVariable('update_learning_rate', start=params.START_LEARNING_RATE),
            stats.Stat(),
            ModelSaver()
        ],
        max_epochs=500,
        verbose=1,

        # Only relevant when create_validation_split = True
        eval_size=0.1,

        # Need to specify splits manually like indicated below!
        create_validation_split=params.SUBSET>0,
    )

    # It is recommended to use the same training/validation split every model for ensembling and threshold optimization
    #
    # To set specific training/validation split:
    net.X_train = np.load(params.IMAGE_SOURCE + "/X_train.npy")
    net.X_valid = np.load(params.IMAGE_SOURCE + "/X_valid.npy")
    net.y_train = np.load(params.IMAGE_SOURCE + "/y_train.npy")
    net.y_valid = np.load(params.IMAGE_SOURCE + "/y_valid.npy")

    return net, X, y
开发者ID:StevenReitsma,项目名称:kaggle-diabetic-retinopathy,代码行数:104,代码来源:net_512_b64_ns.py


注:本文中的nolearn.lasagne.NeuralNet.X_valid方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。