当前位置: 首页>>代码示例>>Python>>正文


Python NeuralNet.get_output方法代码示例

本文整理汇总了Python中nolearn.lasagne.NeuralNet.get_output方法的典型用法代码示例。如果您正苦于以下问题:Python NeuralNet.get_output方法的具体用法?Python NeuralNet.get_output怎么用?Python NeuralNet.get_output使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在nolearn.lasagne.NeuralNet的用法示例。


在下文中一共展示了NeuralNet.get_output方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import get_output [as 别名]
def main():
    data = load_av_letters('data/allData_mouthROIs.mat')

    # create the necessary variable mappings
    data_matrix = data['dataMatrix']
    data_matrix_len = data_matrix.shape[0]
    targets_vec = data['targetsVec']
    vid_len_vec = data['videoLengthVec']
    iter_vec = data['iterVec']

    indexes = create_split_index(data_matrix_len, vid_len_vec, iter_vec)

    # split the data
    train_data = data_matrix[indexes == True]
    train_targets = targets_vec[indexes == True]
    test_data = data_matrix[indexes == False]
    test_targets = targets_vec[indexes == False]

    idx = [i for i, elem in enumerate(test_targets) if elem == 20]

    print(train_data.shape)
    print(test_data.shape)
    print(sum([train_data.shape[0], test_data.shape[0]]))

    # resize the input data to 40 x 30
    train_data_resized = resize_images(train_data).astype(np.float32)

    # normalize the inputs [0 - 1]
    train_data_resized = normalize_input(train_data_resized, centralize=True)

    test_data_resized = resize_images(test_data).astype(np.float32)
    test_data_resized = normalize_input(test_data_resized, centralize=True)

    dic = {}
    dic['trainDataResized'] = train_data_resized
    dic['testDataResized'] = test_data_resized

    """second experiment: overcomplete sigmoid encoder/decoder, squared loss"""
    encode_size = 2500
    sigma = 0.5

    # to get tied weights in the encoder/decoder, create this shared weightMatrix
    # 1200 x 2000
    w1, layer1 = build_encoder_layers(1200, 2500, sigma)

    ae1 = NeuralNet(
        layers=layer1,
        max_epochs=50,
        objective_loss_function=squared_error,
        update=adadelta,
        regression=True,
        verbose=1
    )

    load = True
    save = False
    if load:
        print('[LOAD] layer 1...')
        ae1.load_params_from('layer1.dat')
    else:
        print('[TRAIN] layer 1...')
        ae1.fit(train_data_resized, train_data_resized)

    # save params
    if save:
        print('[SAVE] layer 1...')
        ae1.save_params_to('layer1.dat')

    train_encoded1 = ae1.get_output('encoder', train_data_resized)  # 12293 x 2000

    w2, layer2 = build_encoder_layers(2500, 1250)
    ae2 = NeuralNet(
        layers=layer2,
        max_epochs=50,
        objective_loss_function=squared_error,
        update=adadelta,
        regression=True,
        verbose=1
    )

    load2 = True
    if load2:
        print('[LOAD] layer 2...')
        ae2.load_params_from('layer2.dat')
    else:
        print('[TRAIN] layer 2...')
        ae2.fit(train_encoded1, train_encoded1)

    save2 = False
    if save2:
        print('[SAVE] layer 2...')
        ae2.save_params_to('layer2.dat')

    train_encoded2 = ae2.get_output('encoder', train_encoded1)  # 12293 x 1250

    w3, layer3 = build_encoder_layers(1250, 600)
    ae3 = NeuralNet(
        layers=layer3,
        max_epochs=100,
        objective_loss_function=squared_error,
#.........这里部分代码省略.........
开发者ID:behtak,项目名称:ip-avsr,代码行数:103,代码来源:sde_autoencoder.py


注:本文中的nolearn.lasagne.NeuralNet.get_output方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。