当前位置: 首页>>代码示例>>Python>>正文


Python NeuralNet.output_hiddenLayer方法代码示例

本文整理汇总了Python中nolearn.lasagne.NeuralNet.output_hiddenLayer方法的典型用法代码示例。如果您正苦于以下问题:Python NeuralNet.output_hiddenLayer方法的具体用法?Python NeuralNet.output_hiddenLayer怎么用?Python NeuralNet.output_hiddenLayer使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在nolearn.lasagne.NeuralNet的用法示例。


在下文中一共展示了NeuralNet.output_hiddenLayer方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: createSAE

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import output_hiddenLayer [as 别名]
    def createSAE(input_height, input_width, X_train, X_out):
        encode_size = 200

        cnn1 = NeuralNet(layers=[
            ('input', layers.InputLayer),
            ('hidden', layers.DenseLayer),
            ('hiddenOut', layers.DenseLayer),
            ('output_layer', ReshapeLayer),
        ],

            input_shape=(None, 1, input_width, input_height),
            hidden_num_units= 10000,
            hiddenOut_num_units= 42000,
            output_layer_shape = (([0], -1)),

            update_learning_rate=learning_rate,
            update_momentum=update_momentum,
            update=nesterov_momentum,
            train_split=TrainSplit(eval_size=train_valid_split),
            # batch_iterator_train=BatchIterator(batch_size=batch_size),
            batch_iterator_train=FlipBatchIterator(batch_size=batch_size),
            regression=True,
            max_epochs=epochs,
            verbose=1,
            hiddenLayer_to_output=-3)

        cnn1.fit(X_train, X_out)
        trian_last_hiddenLayer = cnn1.output_hiddenLayer(X_train)
        test_last_hiddenLayer = cnn1.output_hiddenLayer(test_x)

        cnn2 = NeuralNet(layers=[
            ('input', layers.InputLayer),
            ('hidden', layers.DenseLayer),
            ('output_layer', layers.DenseLayer),
        ],

            input_shape=(None,10000),
            hidden_num_units= 3000,
            output_layer_num_units = 10000,

            update_learning_rate=learning_rate,
            update_momentum=update_momentum,
            update=nesterov_momentum,
            train_split=TrainSplit(eval_size=train_valid_split),
            batch_iterator_train=BatchIterator(batch_size=batch_size),
            # batch_iterator_train=FlipBatchIterator(batch_size=batch_size),
            regression=True,
            max_epochs=epochs,
            verbose=1,
            hiddenLayer_to_output=-2)

        trian_last_hiddenLayer = trian_last_hiddenLayer.astype(np.float32)

        cnn2.fit(trian_last_hiddenLayer, trian_last_hiddenLayer)
        trian_last_hiddenLayer = cnn2.output_hiddenLayer(trian_last_hiddenLayer)
        test_last_hiddenLayer = cnn2.output_hiddenLayer(test_last_hiddenLayer)

        cnn3 = NeuralNet(layers=[
            ('input', layers.InputLayer),
            ('hidden', layers.DenseLayer),
            ('output_layer', layers.DenseLayer),
        ],

            input_shape=(None,3000),
            hidden_num_units= 1000,
            output_layer_num_units = 3000,

            update_learning_rate=learning_rate,
            update_momentum=update_momentum,
            update=nesterov_momentum,
            train_split=TrainSplit(eval_size=train_valid_split),
            batch_iterator_train=BatchIterator(batch_size=batch_size),
            # batch_iterator_train=FlipBatchIterator(batch_size=batch_size),
            regression=True,
            max_epochs=epochs,
            verbose=1,
            hiddenLayer_to_output=-2)

        trian_last_hiddenLayer = trian_last_hiddenLayer.astype(np.float32)
        cnn3.fit(trian_last_hiddenLayer, trian_last_hiddenLayer)
        trian_last_hiddenLayer = cnn3.output_hiddenLayer(trian_last_hiddenLayer)
        test_last_hiddenLayer = cnn3.output_hiddenLayer(test_last_hiddenLayer)

        cnn4 = NeuralNet(layers=[
            ('input', layers.InputLayer),
            ('hidden', layers.DenseLayer),
            ('output_layer', layers.DenseLayer),
        ],

            input_shape=(None,1000),
            hidden_num_units= 300,
            output_layer_num_units = 1000,

            update_learning_rate=learning_rate,
            update_momentum=update_momentum,
            update=nesterov_momentum,
            train_split=TrainSplit(eval_size=train_valid_split),
            batch_iterator_train=BatchIterator(batch_size=batch_size),
            # batch_iterator_train=FlipBatchIterator(batch_size=batch_size),
            regression=True,
#.........这里部分代码省略.........
开发者ID:idocoh,项目名称:ISH_Lasagne,代码行数:103,代码来源:articleCat_DAE_4.py


注:本文中的nolearn.lasagne.NeuralNet.output_hiddenLayer方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。