当前位置: 首页>>代码示例>>Python>>正文


Python NeuralNet.predict方法代码示例

本文整理汇总了Python中nolearn.lasagne.NeuralNet.predict方法的典型用法代码示例。如果您正苦于以下问题:Python NeuralNet.predict方法的具体用法?Python NeuralNet.predict怎么用?Python NeuralNet.predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在nolearn.lasagne.NeuralNet的用法示例。


在下文中一共展示了NeuralNet.predict方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: fit_model

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict [as 别名]
def fit_model(train_x, y, test_x):
    """Feed forward neural network for kaggle digit recognizer competition.
    Intentionally limit network size and optimization time (by choosing max_epochs = 15) to meet runtime restrictions
    """
    print("\n\nRunning Convetional Net.  Optimization progress below\n\n")
    net1 = NeuralNet(
        layers=[  #list the layers here
            ('input', layers.InputLayer),
            ('hidden1', layers.DenseLayer),
            ('output', layers.DenseLayer),
            ],

        # layer parameters:
        input_shape=(None, train_x.shape[1]),
        hidden1_num_units=200, hidden1_nonlinearity=rectify,  #params of first layer
        output_nonlinearity=softmax,  # softmax for classification problems
        output_num_units=10,  # 10 target values

        # optimization method:
        update=nesterov_momentum,
        update_learning_rate=0.05,
        update_momentum=0.7,

        regression=False,
        max_epochs=10,  # Intentionally limited for execution speed
        verbose=1,
        )

    net1.fit(train_x, y)
    predictions = net1.predict(test_x)
    return(predictions)
开发者ID:huanqi,项目名称:Otto_Group_Competition,代码行数:33,代码来源:NN_Lasagne_Example_2.py

示例2: nn_example

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict [as 别名]
def nn_example(data):
    net1 = NeuralNet(
        layers=[('input', layers.InputLayer),
                ('hidden', layers.DenseLayer),
                ('output', layers.DenseLayer),
                ],
        # layer parameters:
        input_shape=(None, 28*28),
        hidden_num_units=100,  # number of units in 'hidden' layer
        output_nonlinearity=lasagne.nonlinearities.softmax,
        output_num_units=10,  # 10 target values for the digits 0, 1, 2, ..., 9

        # optimization method:
        update=nesterov_momentum,
        update_learning_rate=0.01,
        update_momentum=0.9,

        max_epochs=10,
        verbose=1,
        )

    # Train the network
    net1.fit(data['X_train'], data['y_train'])

    # Try the network on new data
    print("Feature vector (100-110): %s" % data['X_test'][0][100:110])
    print("Label: %s" % str(data['y_test'][0]))
    print("Predicted: %s" % str(net1.predict([data['X_test'][0]])))
开发者ID:karsinkk,项目名称:Machine-Learning,代码行数:30,代码来源:Lasagne+Test.py

示例3: gridsearch_alpha

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict [as 别名]
    def gridsearch_alpha(self,learning_rate,index,params=None):
        hidden_unit = ((index+1)*2)/3
        self.l_in = ls.layers.InputLayer(shape=(None,n_input),input_var=None)
        self.l_hidden = ls.layers.DenseLayer(self.l_in,num_units=15,nonlinearity=ls.nonlinearities.rectify)
        self.network = l_out = ls.layers.DenseLayer(self.l_hidden,num_units=1)
        list_results = np.array([learning_rate.shape[0]],dtype=np.float64)
        for item in learning_rate:
            #Init Neural net
            net1 = NeuralNet(
                layers=self.network,
                # optimization method:
                update=nesterov_momentum,
                update_learning_rate=item,
                update_momentum=0.9,
                regression=True,  # flag to indicate we're dealing with regression problem
                max_epochs=800,  # we want to train this many epochs
#                 verbose=1,
                eval_size = 0.4
            )
            net1.fit(self.X_training,self.y_training)
            self.pred = net1.predict(self.n_sample2)
            name_file = "Params/saveNeuralNetwork_%s_%s.tdn" %(item,index)
            net1.save_params_to(name_file)
            score_nn = net1.score(self.n_sample2,self.n_test2)
            list_results[item] = score_nn
            print "index=%f,item=%f,score=%f"%(index,item,score_nn)
        return list_results
开发者ID:NhuanTDBK,项目名称:TrafficPrediction,代码行数:29,代码来源:nnGridSearch.py

示例4: NN

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict [as 别名]
class NN():
    def __init__(self):
        self.nn = None
        self.scaler = MinMaxScaler(feature_range = (-1, 1))
        self.y_scaler = MinMaxScaler(feature_range = (-1,1))

    def fit(self, X, y):
        
        """incremental online fitting"""

        X = np.asarray(X).reshape(1, -1).astype(np.float32)
        y = np.asarray(y).reshape(-1, 1).astype(np.float32)

        self.scaler = self.scaler.partial_fit(X)
        self.y_scaler = self.y_scaler.partial_fit(y)

        self.nn = NeuralNet(
                layers=[
                    ('input', layers.InputLayer),
                    ('hidden', layers.DenseLayer),
                    ('output', layers.DenseLayer),
                    ],
                # layer parameters:
                input_shape=(None, len(X[0])),
                hidden_num_units=15,  # number of units in hidden layer

                output_nonlinearity=None,  # output layer uses identity function
                output_num_units=1,  # 2 target values

                # optimization method:
                update=nesterov_momentum,
                update_learning_rate=0.01,
                update_momentum=0.9,

                regression=True,  # flag to indicate we're dealing with regression problem
                max_epochs=2,  # TRY 50 and 46 epochs!
                verbose=3,
                eval_size=0.0
                )

        print self.scaler.transform(X), '|', self.y_scaler.transform(y)
        self.nn.fit(self.scaler.transform(X), self.y_scaler.transform(y))
        return self

    def predict(self, X):
    	print self.nn.predict(X)
        return self.nn.predict(X) 
开发者ID:MichaelBroughton,项目名称:flappy_q_learn,代码行数:49,代码来源:qlearn_heavy_mem.py

示例5: NN

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict [as 别名]
class NN(object):
    
    def __init__(self, input_size, hidden_1_size, hidden_2_size=None):
        n_layers = [
            ('input', layers.InputLayer),
            ('hidden1', layers.DenseLayer),
            ('dropout1', layers.DropoutLayer)
        ]
        if hidden_2_size is not None:
            n_layers.extend(
                [('hidden2', layers.DenseLayer), ('dropout2', layers.DropoutLayer)]
            )
        n_layers.append(('output', layers.DenseLayer))
        
        self.model = NeuralNet(
            layers=n_layers,
            input_shape=(None, input_size),
            hidden1_num_units=hidden_1_size, dropout1_p=0.5,
    
            output_nonlinearity=tanh,
            output_num_units=1,
            regression=True,

            update=nesterov_momentum,
            update_learning_rate=0.01,
            update_momentum=0.9,
    
            eval_size=0.1,
            on_epoch_finished=[
                AdjustVariable('update_learning_rate', stop=0.0001, decrement=0.00001),
                AdjustVariable('update_momentum',      stop=0.999,  increment=0.0001),
                EarlyStopping(patience=100)
            ],
            
            max_epochs=5000,
            verbose=1
        )
        if hidden_2_size is not None:
            self.model.__dict__['hidden2_num_units'] = hidden_2_size
            self.model.__dict__['dropout2_p'] = 0.5            
    
    def train(self, X, Y):
        self.model.fit(np.asarray(X, dtype=np.float32), np.asarray(Y, dtype=np.float32))
    
    def predict_continuous(self, X_test):
        return self.model.predict(np.asarray(X_test, dtype=np.float32))
    
    def predict_classes(self, X_test):
        Y_pred = self.predict_continuous(X_test)
        
        # threshold the continuous values to get the classes
        pos = Y_pred >= .33
        neg = Y_pred <= -0.33
        neu = np.logical_and(Y_pred < 0.33, Y_pred > -0.33)
        Y_pred[pos] = 1
        Y_pred[neg] = -1
        Y_pred[neu] = 0
        
        return Y_pred.reshape(-1)
开发者ID:smartinsightsfromdata,项目名称:twitter-sentiment,代码行数:61,代码来源:nn.py

示例6: predict

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict [as 别名]
    def predict(self, X):
        X = np.array(X,dtype=np.float32)
        preds = NeuralNet.predict(self,X)

        preds = np.argmax(preds,axis=1)
        preds = self.label_encoder.inverse_transform(preds)

        return preds
开发者ID:dnola,项目名称:145_whats_cooking,代码行数:10,代码来源:deep_net_helpers.py

示例7: __init__

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict [as 别名]
class network:
    """
    a base class for a neural network
    """

    name = 'baseclass'
    network = []

    # this variable is read after each epoch
    again = True

    def __init__(self):
        """
        set up a network
        """

        self.network = NeuralNet(layers=[])

    def fit(self, X, y):
        """
        use the training set to get a model
        """

        # handle the interrupt signal gracefully
        # (by stopping after the current epoch)
        for instance in self.network.on_epoch_finished:
            if isinstance(instance, checkAgain):
                signal.signal(signal.SIGINT, self.handle_break)
                break

        print('\nusing network {}\n'.format(self.name))

        return self.network.fit(X,y)

    def predict(self, X):
        """
        predict the targets after the network is fitted
        """

        return self.network.predict(X)

    def handle_break(self, signum, frame):
        """
        this function handles the siginterrupt by setting the variable 'again'
        to false
        """

        if self.again:
            # first signal - soft stop
            print(
                "\ninterrupt signal received. Stopping after the current epoch")
            self.again = False
        else:
            # second signal - break immediately
            print("\nsecond interrupt signal received. Goodbye")
            sys.exit(1)
开发者ID:egolus,项目名称:FaceRecognition,代码行数:58,代码来源:networks.py

示例8: RegressionNN

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict [as 别名]
class RegressionNN(RegressionBase.RegressionBase):
    def __init__(self, isTrain, isNN):
        super(RegressionNN, self).__init__(isTrain, isNN)
        # data preprocessing
        #self.dataPreprocessing()

        self.net1 = NeuralNet(
                        layers=[  # three layers: one hidden layer
                            ('input', layers.InputLayer),
                            ('hidden', layers.DenseLayer),
                            #('hidden2', layers.DenseLayer),
                            #('hidden3', layers.DenseLayer),
                            ('output', layers.DenseLayer),
                            ],
                        # layer parameters:
                        input_shape=(None, 13),  # input dimension is 13
                        hidden_num_units=6,  # number of units in hidden layer
                        #hidden2_num_units=8,  # number of units in hidden layer
                        #hidden3_num_units=4,  # number of units in hidden layer
                        output_nonlinearity=None,  # output layer uses sigmoid function
                        output_num_units=1,  # output dimension is 1

                        # obejctive function
                        objective_loss_function = lasagne.objectives.squared_error,

                        # optimization method:
                        update=lasagne.updates.nesterov_momentum,
                        update_learning_rate=0.002,
                        update_momentum=0.4,

                        # use 25% as validation
                        train_split=TrainSplit(eval_size=0.2),

                        regression=True,  # flag to indicate we're dealing with regression problem
                        max_epochs=100,  # we want to train this many epochs
                        verbose=0,
                        )

    def dataPreprocessing(self):
        # due to the observation, standization does not help the optimization.
        # So do not use it!
        #self.Standardization()
        pass

    def training(self):
        # train the NN model
        self.net1.fit(self.X_train, self.y_train)

    def predict(self):
        # predict the test data
        self.y_pred = self.net1.predict(self.X_test)

        # print MSE
        mse = mean_squared_error(self.y_pred, self.y_test)
        print "MSE: {}".format(mse)
开发者ID:lujunzju,项目名称:AirTicketPredicting,代码行数:57,代码来源:RegressionNN.py

示例9: test_lasagne_functional_regression

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict [as 别名]
def test_lasagne_functional_regression(boston):
    from nolearn.lasagne import NeuralNet

    X, y = boston

    layer1 = InputLayer(shape=(128, 13))
    layer2 = DenseLayer(layer1, num_units=100)
    output = DenseLayer(layer2, num_units=1, nonlinearity=identity)

    nn = NeuralNet(
        layers=output,
        update_learning_rate=0.01,
        update_momentum=0.1,
        regression=True,
        max_epochs=50,
        )

    nn.fit(X[:300], y[:300])
    assert mean_absolute_error(nn.predict(X[300:]), y[300:]) < 3.0
    assert r2_score(nn.predict(X[300:]), y[300:]) == nn.score(X[300:], y[300:])
开发者ID:dnouri,项目名称:nolearn,代码行数:22,代码来源:test_base.py

示例10: test_lasagne_functional_mnist

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict [as 别名]
def test_lasagne_functional_mnist(mnist):
    # Run a full example on the mnist dataset
    from nolearn.lasagne import NeuralNet

    X, y = mnist
    X_train, y_train = X[:60000], y[:60000]
    X_test, y_test = X[60000:], y[60000:]

    epochs = []

    def on_epoch_finished(nn, train_history):
        epochs[:] = train_history
        if len(epochs) > 1:
            raise StopIteration()

    nn = NeuralNet(
        layers=[
            ('input', InputLayer),
            ('hidden1', DenseLayer),
            ('dropout1', DropoutLayer),
            ('hidden2', DenseLayer),
            ('dropout2', DropoutLayer),
            ('output', DenseLayer),
            ],
        input_shape=(None, 784),
        output_num_units=10,
        output_nonlinearity=softmax,

        more_params=dict(
            hidden1_num_units=512,
            hidden2_num_units=512,
            ),

        update=nesterov_momentum,
        update_learning_rate=0.01,
        update_momentum=0.9,

        max_epochs=5,
        on_epoch_finished=on_epoch_finished,
        )

    nn.fit(X_train, y_train)
    assert len(epochs) == 2
    assert epochs[0]['valid_accuracy'] > 0.85
    assert epochs[1]['valid_accuracy'] > epochs[0]['valid_accuracy']
    assert sorted(epochs[0].keys()) == [
        'epoch', 'train_loss', 'valid_accuracy', 'valid_loss',
        ]

    y_pred = nn.predict(X_test)
    assert accuracy_score(y_pred, y_test) > 0.85
开发者ID:Sandy4321,项目名称:nolearn,代码行数:53,代码来源:test_lasagne.py

示例11: nnet

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict [as 别名]
def nnet(pipe):
	pipe.features = pipe.features.astype(np.float32)
	pipe.labels = pipe.labels.astype(np.int32)
	pipe.features = StandardScaler().fit_transform(pipe.features)
	X_train, X_test, y_train, y_test = train_test_split(pipe.features, pipe.labels)
	nnet = NeuralNet(
	          # Specify the layers
	          layers=[('input', layers.InputLayer),
	                  ('hidden1', layers.DenseLayer),
	                  ('hidden2', layers.DenseLayer),
	                  ('hidden3', layers.DenseLayer),
	                  ('output', layers.DenseLayer)],

	          # Input Layer
	          input_shape=(None, pipe.features.shape[1]),

	          # Hidden Layer 1
	          hidden1_num_units=512,
	          hidden1_nonlinearity=rectify,

	          # Hidden Layer 2
	          hidden2_num_units=512,
	          hidden2_nonlinearity=rectify,

	          # # Hidden Layer 3
	          hidden3_num_units=512,
	          hidden3_nonlinearity=rectify,

	          # Output Layer
	          output_num_units=2,
	          output_nonlinearity=softmax,

	          # Optimization
	          update=nesterov_momentum,
	          update_learning_rate=0.001,
	          update_momentum=0.3,
	          max_epochs=30,

	          # Others,
	          regression=False,
	          verbose=1,
	   		)
	         
	nnet.fit(X_train, y_train)
	y_predict = nnet.predict(X_test)

	print "precision for nnet:", precision_score(y_test, y_predict)
	print "recall for nnet:", recall_score(y_test, y_predict)
	print "f1 for nnet:", f1_score(y_test, y_predict, average='weighted')
	pickle.dump( nnet, open( "model.pkl", "wb" ), protocol = cPickle.HIGHEST_PROTOCOL)
开发者ID:chrislepensky,项目名称:WhichWatch,代码行数:52,代码来源:model.py

示例12: network

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict [as 别名]
class network(object):
    def __init__(self,X_train, Y_train):
        #self.__hidden=0

        self.__hidden=int(math.ceil((2*(X_train.shape[1]+ 1))/3))
        self.net= NeuralNet(
            layers=[
                ('input', layers.InputLayer),
                ('hidden', layers.DenseLayer),
                ('output', layers.DenseLayer)
            ],
            input_shape=( None, X_train.shape[1] ),
            hidden_num_units=self.__hidden,
            #hidden_nonlinearity=nonlinearities.tanh,
            output_nonlinearity=None,
            batch_iterator_train=BatchIterator(batch_size=256),
            output_num_units=1,

            on_epoch_finished=[EarlyStopping(patience=50)],
            update=momentum,
            update_learning_rate=theano.shared(np.float32(0.03)),
            update_momentum=theano.shared(np.float32(0.8)),
            regression=True,
            max_epochs=1000,
            verbose=1,
        )

        self.net.fit(X_train,Y_train)

    def predict(self,X):
        return self.net.predict(X)

    def showMetrics(self):
        train_loss = np.array([i["train_loss"] for i in self.net.train_history_])
        valid_loss = np.array([i["valid_loss"] for i in self.net.train_history_])
        pyplot.plot(train_loss, linewidth=3, label="training")
        pyplot.plot(valid_loss, linewidth=3, label="validation")
        pyplot.grid()
        pyplot.legend()
        pyplot.xlabel("epoch")
        pyplot.ylabel("loss")
        # pyplot.ylim(1e-3, 1e-2)
        pyplot.yscale("log")
        pyplot.show()

    def saveNet(self,fname):
        self.net.save_params_to(fname)

    def loadNet(self,fname):
        self.net.load_params_from(fname)
开发者ID:hiteshpaul,项目名称:Salesforecasting,代码行数:52,代码来源:net.py

示例13: main

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict [as 别名]
def main():
    xtrain, ytrain, xval, yval, xtest, ytest = loaddata()

    # <codecell>
    conv_filters = 32
    deconv_filters = 32
    filter_sizes = 7
    epochs = 20
    encode_size = 40
    ae = NeuralNet(
        layers=[
            ('input', layers.InputLayer),
            ('conv', layers.Conv2DLayer),
            ('pool', layers.MaxPool2DLayer),
            ('flatten', ReshapeLayer),  # output_dense
            ('encode_layer', layers.DenseLayer),
            ('hidden', layers.DenseLayer),  # output_dense
            ('unflatten', ReshapeLayer),
            ('unpool', Unpool2DLayer),
            ('deconv', layers.Conv2DLayer),
            ('output_layer', ReshapeLayer),
            ],
        input_shape=(None, 1, 80, 80),
        conv_num_filters=conv_filters,
        conv_filter_size=(filter_sizes, filter_sizes),
        conv_nonlinearity=None,
        pool_pool_size=(2, 2),
        flatten_shape=(([0], -1)), # not sure if necessary?
        encode_layer_num_units=encode_size,
        hidden_num_units=deconv_filters * (28 + filter_sizes - 1) ** 2 / 4,
        unflatten_shape=(([0], deconv_filters, (28 + filter_sizes - 1) / 2, (28 + filter_sizes - 1) / 2 )),
        unpool_ds=(2, 2),
        deconv_num_filters=1,
        deconv_filter_size=(filter_sizes, filter_sizes),
        # deconv_border_mode="valid",
        deconv_nonlinearity=None,
        output_layer_shape=(([0],-1)),
        update_learning_rate=0.01,
        update_momentum=0.975,
        batch_iterator_train=FlipBatchIterator(batch_size=128),
        regression=True,
        max_epochs=epochs,
        verbose=1,
        )
    ae.fit(xtrain, ytrain)

    X_train_pred = ae.predict(xtrain).reshape(-1, 80, 80)
开发者ID:BishKor,项目名称:sst_autoencoder,代码行数:49,代码来源:autoencoder.py

示例14: regressNN

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict [as 别名]
def regressNN(X,y):
	layers_all = [('input',InputLayer),
				   ('dense',DenseLayer),
				   	('output',DenseLayer)]
	np.random.shuffle(X)

	print(X.shape,y.shape)
	#net.fit(X,y)
	folds=3
	skf = KFold( X.shape[0], n_folds=folds)
	for train_index,test_index in skf:
		net = NeuralNet(layers = layers_all,
 					 input_shape = (None,X.shape[1]),
					 dense_num_units=2,
					 dense_nonlinearity=None,
					 regression=True,
					 update_momentum=0.9,
					 update_learning_rate=0.001,
	 				 output_nonlinearity=None,
 					 output_num_units=1,
 					 max_epochs=100)
		Xtrain,Xtest = X[train_index], X[test_index]
		ytrain,ytest = y[train_index], y[test_index]
		
		Xtrain = np.array(Xtrain,dtype='float64')
		Xtest = np.array(Xtest,dtype='float64')
		#Xtrain[np.isinf(Xtrain)] = 0
		net.fit(Xtrain,ytrain)


		error=0
		errorList =[]
		predictions= []
		for i in range(0,Xtest.shape[0]):
			a= np.transpose(Xtest[i,:].reshape(Xtest[i,:].shape[0],1))
			
			pr = net.predict(a)
			temp_err=np.absolute(pr-ytest[i])*60
			errorList.append(temp_err)	
			predictions.append(pr)
			error += temp_err

		print('Average error in minutes: {0}'.format(error/Xtest.shape[0]))
		print('Max/min/median error: {0} , {1} , {2}'.format(max(errorList),min(errorList),np.median(errorList)))
		del errorList[:]
		del predictions[:]
开发者ID:Diwahars,项目名称:StudentLife-DataMining-ModelTraining,代码行数:48,代码来源:sleepNNreg.py

示例15: lasagne_model

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict [as 别名]
def lasagne_model(train, y_train, test):
    layers = [('input', InputLayer),
            ('dense0', DenseLayer),
            ('dropout0', DropoutLayer),
            ('dense1', DenseLayer),
            ('dropout1', DropoutLayer),
            ('dense2', DenseLayer),
            ('dropout2', DropoutLayer),
            ('output', DenseLayer)]

    num_features = len(train[0])
    num_classes = 1

    model = NeuralNet(layers=layers,
            input_shape=(None, num_features),
            objective_loss_function=squared_error,
            dense0_num_units=6,
            dropout0_p=0.4, #0.1,
            dense1_num_units=4,
            dropout1_p=0.4, #0.1,
            dense2_num_units=2,
            dropout2_p=0.4, #0.1,
            output_num_units=num_classes,
            output_nonlinearity=tanh,
            regression=True,
            update=nesterov_momentum, #adagrad,
            update_momentum=0.9,
            update_learning_rate=0.004,
            eval_size=0.2,
            verbose=1,
            max_epochs=5) #15)

    x_train = np.array(train).astype(np.float32)
    x_test = np.array(test).astype(np.float32)

    model.fit(x_train, y_train)
    pred_val = model.predict(x_test)
    print pred_val.shape
    test_probs = np.array(pred_val).reshape(len(pred_val),)
    print test_probs.shape

    indices = test_probs < 0
    test_probs[indices] = 0
    return test_probs
开发者ID:weaponsjtu,项目名称:KaggleCompetition,代码行数:46,代码来源:final.py


注:本文中的nolearn.lasagne.NeuralNet.predict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。