当前位置: 首页>>代码示例>>Python>>正文


Python NeuralNet.predict_proba方法代码示例

本文整理汇总了Python中nolearn.lasagne.NeuralNet.predict_proba方法的典型用法代码示例。如果您正苦于以下问题:Python NeuralNet.predict_proba方法的具体用法?Python NeuralNet.predict_proba怎么用?Python NeuralNet.predict_proba使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在nolearn.lasagne.NeuralNet的用法示例。


在下文中一共展示了NeuralNet.predict_proba方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: fit

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict_proba [as 别名]
def fit(xTrain, yTrain, dense0_num=800, dropout_p=0.5, dense1_num=500, update_learning_rate=0.01,
        update_momentum=0.9, test_ratio=0.2, max_epochs=20):
        #update_momentum=0.9, test_ratio=0.2, max_epochs=20, train_fname='train.csv'):
    #xTrain, yTrain, encoder, scaler = load_train_data(train_fname)
    #xTest, ids = load_test_data('test.csv', scaler)

    num_features = len(xTrain[0,:])
    num_classes = 9
    print num_features

    layers0 = [('input', InputLayer),
           ('dense0', DenseLayer),
           ('dropout', DropoutLayer),
           ('dense1', DenseLayer),
           ('output', DenseLayer)]

    clf = NeuralNet(layers=layers0,
                 input_shape=(None, num_features),
                 dense0_num_units=dense0_num,
                 dropout_p=dropout_p,
                 dense1_num_units=dense1_num,
                 output_num_units=num_classes,
                 output_nonlinearity=softmax,
                 update=nesterov_momentum,
                 update_learning_rate=update_learning_rate,
                 update_momentum=update_momentum,
                 eval_size=test_ratio,
                 verbose=1,
                 max_epochs=max_epochs)

    clf.fit(xTrain, yTrain)
    ll_train = metrics.log_loss(yTrain, clf.predict_proba(xTrain))
    print ll_train

    return clf
开发者ID:qi-feng,项目名称:ClassificationUsingScikitLearn,代码行数:37,代码来源:nn_otto_ensemble_v8.6.py

示例2: train

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict_proba [as 别名]
def train():
    weather = load_weather()
    training = load_training()
    
    X = assemble_X(training, weather)
    print len(X[0])
    mean, std = normalize(X)
    y = assemble_y(training)
        
    input_size = len(X[0])
    
    learning_rate = theano.shared(np.float32(0.1))
    
    net = NeuralNet(
    layers=[  
        ('input', InputLayer),
         ('hidden1', DenseLayer),
        ('dropout1', DropoutLayer),
        ('hidden2', DenseLayer),
        ('dropout2', DropoutLayer),
        ('output', DenseLayer),
        ],
    # layer parameters:
    input_shape=(None, input_size), 
    hidden1_num_units=325, 
    dropout1_p=0.4,
    hidden2_num_units=325, 
    dropout2_p=0.4,
    output_nonlinearity=sigmoid, 
    output_num_units=1, 

    # optimization method:
    update=nesterov_momentum,
    update_learning_rate=learning_rate,
    update_momentum=0.9,
    
    # Decay the learning rate
    on_epoch_finished=[
            AdjustVariable(learning_rate, target=0, half_life=1),
            ],

    # This is silly, but we don't want a stratified K-Fold here
    # To compensate we need to pass in the y_tensor_type and the loss.
    regression=True,
    y_tensor_type = T.imatrix,
    objective_loss_function = binary_crossentropy,
     
    max_epochs=85, 
    eval_size=0.1,
    verbose=1,
    )

    X, y = shuffle(X, y, random_state=123)
    net.fit(X, y)
    
    _, X_valid, _, y_valid = net.train_test_split(X, y, net.eval_size)
    probas = net.predict_proba(X_valid)[:,0]
    print("ROC score", metrics.roc_auc_score(y_valid, probas))

    return net, mean, std     
开发者ID:kaiwang0112006,项目名称:mykaggle_westnile,代码行数:62,代码来源:SimpleLasagneNN.py

示例3: DeepCls

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict_proba [as 别名]
class DeepCls(object):
    def __init__(self,n_cats=2,input_size=1040,k=1):
        self.net1 = NeuralNet(
            layers=[  
                    ('input', layers.InputLayer),
                    ('hidden', layers.DenseLayer),
                    ('output', layers.DenseLayer),
                   ],
            input_shape=(None, input_size),  
            hidden_num_units=300, 
            output_nonlinearity=softmax,  
            output_num_units=n_cats, 

            update=nesterov_momentum,
            update_learning_rate=0.01, 
            update_momentum=0.9, 

            regression=False,  
            max_epochs=2500, 
            verbose=1, 
        )
        self.k=k

    def __call__(self,hog_desc):
        hog_desc=np.expand_dims(hog_desc,0)
        prob=self.net1.predict_proba(hog_desc)
        prob=prob.flatten()
        return prob[self.k]
开发者ID:tjacek,项目名称:realtime_actions,代码行数:30,代码来源:deep.py

示例4: OptNN

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict_proba [as 别名]
def OptNN(d1, h1, d2, h2, d3, start, stop, max_epochs):
    params2 = params.copy()
    on_epoch = [AdjustVariable('update_learning_rate', 
                               start = start, stop = stop),
                AdjustVariable('update_momentum', start = .9, stop = .999)]
    params2['dropout1_p']           = d1
    params2['dropout2_p']           = d2
    params2['dropout3_p']           = d3
    params2['dropout4_p']           = d4
    params2['hidden1_num_units']    = h1
    params2['hidden2_num_units']    = h2
    params2['hidden3_num_units']    = h3
    params2['max_epochs']           = max_epochs
    params2['on_epoch_finished'] = on_epoch
    kcv = StratifiedKFold(Y, 5, shuffle = True)
    res = np.empty((len(Y), len(np.unique(Y)))); i = 1
    CVScores = []
    for train_idx, valid_idx in kcv:
        logger.info("Running fold %d...", i); i += 1
        net = NeuralNet(**params2)
        net.set_params(eval_size = None)
        net.fit(X[train_idx], Y[train_idx])
        res[valid_idx, :] = net.predict_proba(X[valid_idx]) 
        CVScores.append(log_loss(Y[valid_idx], res[valid_idx]))
    return -np.mean(CVScores)
开发者ID:cwjacklin,项目名称:Otto,代码行数:27,代码来源:net.py

示例5: OptNN2

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict_proba [as 别名]
def OptNN2(d0, d1,d2, d3, h1, h2, h3, me, ls, le):
    h1, h2, h3 = int(h1), int(h2), int(h3); 
    me = int(me)
    params = dict(
        layers = [
            ('input', layers.InputLayer),
            ('dropout1', layers.DropoutLayer),
            ('hidden1', layers.DenseLayer),
            ('dropout2', layers.DropoutLayer),
            ('hidden2', layers.DenseLayer),
            ('dropout3', layers.DropoutLayer),
            ('hidden3', layers.DenseLayer),
            ('dropout4', layers.DropoutLayer),
            ('output', layers.DenseLayer),
            ],

        input_shape = (None, 93),
        dropout1_p = d0,
        hidden1_num_units = h1,
        dropout2_p = d1,
        hidden2_num_units = h2,
        dropout3_p = d2,
        hidden3_num_units = h3,
        dropout4_p = d3,
        output_nonlinearity = softmax,
        output_num_units = 9,

        update = nesterov_momentum,
        update_learning_rate = theano.shared(float32(l_start)),
        update_momentum = theano.shared(float32(m_start)),

        regression = False,
        on_epoch_finished = [
            AdjustVariable('update_learning_rate', start = ls, 
                stop = le, is_log = True),
            AdjustVariable('update_momentum', start = m_start, 
                stop = m_stop, is_log = False),
            ],
        max_epochs = me,
        verbose = 1,
        )

    CVScores = []
    res = np.empty((len(Y), len(np.unique(Y))))
    kcv = StratifiedKFold(Y, 5, shuffle = True); i = 1
    for train_idx, valid_idx in kcv:
        logger.info("Running fold %d...", i); i += 1
        net = NeuralNet(**params)
        net.set_params(eval_size = None)
        net.fit(X[train_idx], Y[train_idx])
        res[valid_idx, :] = net.predict_proba(X[valid_idx])
        CVScores.append(log_loss(Y[valid_idx], res[valid_idx]))
    return -np.mean(CVScores)
开发者ID:cwjacklin,项目名称:Otto,代码行数:55,代码来源:net.py

示例6: calc_prob_bag

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict_proba [as 别名]
def calc_prob_bag(i, best_max_epochs, NNargs, X_all, y_all, X_test):
    np.random.seed(111*(i+1)) # diffs random seed to diffs bagging
    print('\n - Bag: %i ' % (i+1))
    if best_max_epochs == 0:
        print('    First fit to get optimal num of epochs...')
        NNargs["max_epochs"] = 1000
        NNargs["eval_size"] = 0.05 # just a small test set to derive optimal numepochs
        NNargs["on_epoch_finished"][-1] = EarlyStopping(patience=25) # more patience
        clf_bag = NeuralNet(**NNargs)
        clf_bag.fit(X_all, y_all)
        global GLOBrealnumepochs
        best_max_epochs = GLOBrealnumepochs
    print('        we will refit now with max epochs = %i' % best_max_epochs)
    NNargs["max_epochs"] = best_max_epochs   
    NNargs["eval_size"] = 0.0001
    NNargs["on_epoch_finished"][-1] = EarlyStopping(patience=1000) # kind of a infinite patience to let max epochs rule
    clf_bag = NeuralNet(**NNargs)
    clf_bag.fit(X_all, y_all)
    probs_bags = clf_bag.predict_proba(X_test)
    return probs_bags
开发者ID:queise,项目名称:Kaggle,代码行数:22,代码来源:Otto_LNN.py

示例7: train_dnn

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict_proba [as 别名]
def train_dnn(train, train_y, test):
    num_features = train.shape[1]
    num_classes = len(list(set(train_y)))
    layers0 = [('input', InputLayer),
     	      ('dropout0', DropoutLayer),
               ('dense0', DenseLayer), 
               ('dropout1', DropoutLayer),
    	   ('dense1', DenseLayer),
    	   ('dropout2', DropoutLayer),
               ('output', DenseLayer)]


    net0 = NeuralNet(layers=layers0,
                     input_shape=(None, num_features),
                     dropout0_p = 0.1, #theano.shared(float32(0.1)),
    		 dense0_num_units= 5000,
                     dropout1_p= 0.3, #theano.shared(float32(0.5)),
    	         dense1_num_units = 10000,
    		 dropout2_p = 0.5,
                     output_num_units=num_classes,
                     output_nonlinearity=softmax,
                     update=nesterov_momentum,
                     #update_learning_rate=0.003,
                     #update_momentum=0.9,
                     update_learning_rate = theano.shared(float32(0.001)),
        		  update_momentum=theano.shared(float32(0.9)),
                     objective_loss_function = categorical_crossentropy,
                     train_split = TrainSplit(0.2),
                     verbose=1,
                     max_epochs=150,
    		 on_epoch_finished=[
    		  EarlyStopping(patience = 20),	
    		  AdjustVariable('update_learning_rate', start=0.001, stop=0.0001),
            	  AdjustVariable('update_momentum', start=0.9, stop=0.999),
    		 ]
    )
    net0.fit(train, train_y)
    print('Prediction Complete')
    pred1 = net0.predict_proba(test)
    return pred1
开发者ID:XIG-DATA,项目名称:JobTitlePrediction,代码行数:42,代码来源:job_dnn.py

示例8: train

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict_proba [as 别名]
def train(features, features_sub,label):
    layers0 = [('input', InputLayer),
                ('dropout0', DropoutLayer),
               ('dense0', DenseLayer),
               ('dropout1', DropoutLayer),
               ('dense1', DenseLayer),
               ('dropout2', DropoutLayer),
               ('output', DenseLayer)]


    net0 = NeuralNet(layers=layers0,
                     input_shape=(None, features.shape[1]),
                     dropout0_p =  0.18, #theano.shared(float32(0.1)),
                     dense0_num_units= 2000,
                     dropout1_p=  0.6, #theano.shared(float32(0.4)),
                     dense1_num_units= 4000,
                     dropout2_p = 0.9, #theano.shared(float32(0.7)),
                     output_num_units= len(set(label)),
                     output_nonlinearity=softmax,
                     update=nesterov_momentum,
                     update_momentum = 0.95, #theano.shared(float32(0.9)),
                     update_learning_rate = 0.002, #theano.shared(float32(0.01)),
                     #update_momentum=theano.shared(float32(0.9)),
                     train_split = TrainSplit(0.2),
                     verbose=1,
                     max_epochs = 40
                    #  on_epoch_finished=[
                    #     AdjustVariable('update_learning_rate', start=0.01, stop=0.005),
                    #     #AdjustVariable('update_momentum', start=0.9, stop=0.999),
                    #     #AdjustVariable('dropout0_p', start = 0.1, stop = 0.2),
                    #     # AdjustVariable('dropout1_p', start = 0.45, stop = 0.6),
                    #     # AdjustVariable('dropout2_p', start = 0.8, stop = 0.9)
                    # ]
                )

    features = np.array(features.values, dtype = np.float32)
    net0.fit(features, np.array(label, dtype = np.int32) )
    print('Prediction Complete')
    results = net0.predict_proba(np.array(features_sub.values, dtype = np.float32))
    return 
开发者ID:ouceduxzk,项目名称:Kaggle_SF_Crime,代码行数:42,代码来源:dnn_crime.py

示例9: train_autoencoder

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict_proba [as 别名]
def train_autoencoder(train, train_y, test):
    num_features = train.shape[1]
    net = NeuralNet(
        layers=[
            ('input', InputLayer),
            ('auto', AutoEncoder),
            ('output', DenseLayer),
            ],
        input_shape=(None, 1, num_features),
        auto_num_units = 1000, 
        auto_n_hidden = 10,
        output_num_units=1000, 
        update_learning_rate=theano.shared(float32(0.03)),
        update_momentum=theano.shared(float32(0.9)),
        output_nonlinearity=nonlinearities.softmax,
        regression=True,
        max_epochs=3,
        verbose=1,
    )
    net.fit(train, train_y)
    with open('net.pickle', 'wb') as f:
        pickle.dump(net, f, -1)
    pred_auto = net.predict_proba(test)
    return pred_auto
开发者ID:XIG-DATA,项目名称:JobTitlePrediction,代码行数:26,代码来源:job_dnn.py

示例10: nn_level2

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict_proba [as 别名]
def nn_level2(train_x, train_y, test_x):
    '''
    neural net proba predict for level 2
    '''
    num_classes = len(np.unique(train_y))
    num_features = train_x.shape[1]
    layers0 = [('input', InputLayer),
               ('dropoutf', DropoutLayer),
               ('dense0', DenseLayer),
               ('dropout', DropoutLayer),
               ('dense1', DenseLayer),
               ('dropout2', DropoutLayer),
               ('output', DenseLayer)]

    net0 = NeuralNet(layers=layers0,
                     input_shape=(None, num_features),
                     dropoutf_p=0.15,
                     dense0_num_units=1000,
                     dropout_p=0.25,
                     dense1_num_units=500,
                     dropout2_p=0.25,
                     output_num_units=num_classes,
                     output_nonlinearity=softmax,

                     update=adagrad,
                     update_learning_rate=theano.shared(np.float32(0.01)),
                     # on_epoch_finished=[AdjustVariable('update_learning_rate', start=0.02, stop=0.016)],
                     max_epochs=18,
                     eval_size=0.2,
                     verbose=1,
                     )
    
    net0.fit(train_x, train_y)
    pred = net0.predict_proba(test_x).astype(np.float32)
    
    return pred
开发者ID:MitinRoman,项目名称:bnp_paribas-1,代码行数:38,代码来源:level2.py

示例11: classify

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict_proba [as 别名]
def classify(train_file, test_file, output_file):
    test = pd.read_csv(test_file)
    train = pd.read_csv(train_file)
    test['age'] = test['age'] / train['age'].max()
    train['age'] = train['age'] / train['age'].max()
    train.replace(to_replace={'Transfer': 0, 'Return_to_owner': 1, 'Euthanasia': 2, 'Adoption': 3, 'Died': 4}, inplace=True)
    test.replace(to_replace={'Transfer': 0, 'Return_to_owner': 1, 'Euthanasia': 2, 'Adoption': 3, 'Died': 4}, inplace=True)

    train_X = train.ix[:, features].as_matrix().astype('float32')
    train_Y = train.ix[:, 'outcome'].as_matrix().astype('int32')
    test_X = test.ix[:, features].as_matrix().astype('float32')

    model = NeuralNet(
        layers=[
            ('input', layers.InputLayer),
            ('hidden1', layers.DenseLayer),
            ('hidden2', layers.DenseLayer),
            ('output', layers.DenseLayer),
        ],

        input_shape=(None, len(features)),
        hidden1_num_units=100, hidden1_nonlinearity=sigmoid,
        hidden2_num_units=100, hidden2_nonlinearity=rectify,
        max_epochs=100,
        output_nonlinearity=softmax,
        output_num_units=5,
        update_learning_rate=0.01,
    ).fit(train_X, train_Y)
    all_proba = model.predict_proba(test_X).reshape(test_X.shape[0], 5)

    result = pd.DataFrame(
        data=all_proba,
        columns=['Transfer', 'Return_to_owner', 'Euthanasia', 'Adoption', 'Died'],
        index=test['id']
    )
    result.to_csv(output_file, index_label="ID", float_format='%.5f')
开发者ID:arodiss,项目名称:ShelterAnimals,代码行数:38,代码来源:classify-nn.py

示例12: AdjustVariable

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict_proba [as 别名]
            AdjustVariable('update_momentum', start=0.9, stop=0.999),
            ],
        regression=False,  # flag to indicate we're dealing with regression problem
        max_epochs=500,  # we want to train this many epochs
        verbose=1        
        )                 
 

    clf.fit(x_train,y_train)   
#    if 1:
#        y_pred = clf.predict_proba(x_test)
#        
#        filename = 'testdata_aug_d'
#        savefile = open(filename+'.pkl', 'wb')
#        cPickle.dump((x_test, y_pred, name1),savefile,-1)
#        savefile.close()  
    
    if 1:
        y_pred = clf.predict(x_test)
        print "Accuracy:", zero_one_loss(y_test, y_pred)
        print "Classification report:"
        print classification_report(y_test, y_pred)
        print 'Confusion matrix:'
        print confusion_matrix(y_test,y_pred)
    else:
        x_test = np.asarray(x_test,dtype=np.float32)
        ypred = clf.predict_proba(x_test)
        y_str = ['Class_1','Class_2','Class_3','Class_4','Class_5','Class_6','Class_7','Class_8','Class_9']
        kcsv.print_csv(ypred, name1, y_str,indexname='id')
                          
    
开发者ID:coreyhahn,项目名称:kaggle_otto,代码行数:31,代码来源:dnn_base01.py

示例13: sum

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict_proba [as 别名]
    weights.append(res['x'])
  #  aucList.append(roc_auc_score(y.iloc[test_index],train_eval_probs))

print "Deep Learning - CNN"
print sum(netAccuracy)/10.











#%%
resultNet = net0.predict_proba(X_test)
result = gbm.predict(xgb.DMatrix(X_test))
result_lb = lb.predict_proba(X_test)
submit = pd.read_csv('/Users/weizhi/Desktop/kaggle walmart competetion/sample_submission.csv')
Id = submit['VisitNumber']
submit.iloc[:,1:] = resultNet
submit.iloc[:,0] = Id
submit.to_csv('/Users/weizhi/Desktop/kaggle walmart competetion/deeplearning.csv',index = False)





开发者ID:liwzhi,项目名称:machineLearning,代码行数:27,代码来源:Kaggle_walmart_data.py

示例14: print

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict_proba [as 别名]
                                random_state=1)

print("\n\nTraining")    
net = NeuralNet(
    layers=[  # three layers: one hidden layer
        ('input', layers.InputLayer),
        ('hidden', layers.DenseLayer),
        ('output', layers.DenseLayer),
        ],

    input_shape=(None, 6),
    hidden_num_units=5,
    output_nonlinearity=sigmoid,
    output_num_units=2,

    # optimization method:
    update=sgd,
    update_learning_rate=0.01,
    #update_momentum=0.9,

    regression=False,
    max_epochs=50,
    verbose=1,
    )

net.fit(X, y)

pred = net.predict_proba(tX)[:,0]

print("\t", log_loss(ty, pred))
print("\t", roc_auc_score(ty, pred))
开发者ID:leonardodaniel,项目名称:kaggle_mosco,代码行数:33,代码来源:experiment_rnt.py

示例15: NeuralNet

# 需要导入模块: from nolearn.lasagne import NeuralNet [as 别名]
# 或者: from nolearn.lasagne.NeuralNet import predict_proba [as 别名]
    ("input", InputLayer),
    ("dense0", DenseLayer),
    ("dropout", DropoutLayer),
    ("dense1", DenseLayer),
    ("output", DenseLayer),
]


net0 = NeuralNet(
    layers=layers0,
    input_shape=(None, num_features),
    dense0_num_units=100,
    dropout_p=0.5,
    dense1_num_units=100,
    output_num_units=num_classes,
    output_nonlinearity=softmax,
    update=nesterov_momentum,
    update_learning_rate=0.05,
    update_momentum=0.9,
    eval_size=0.2,
    verbose=1,
    max_epochs=20,
)


net0.fit(train_X, train_y)


y_prob = net0.predict_proba(check_X)
print ("LogLoss {score}".format(score=log_loss(check_y, y_prob)))
开发者ID:huanqi,项目名称:Otto_Group_Competition,代码行数:32,代码来源:NN_Lasagne_CV.py


注:本文中的nolearn.lasagne.NeuralNet.predict_proba方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。