当前位置: 首页>>代码示例>>Python>>正文


Python ICA.score_sources方法代码示例

本文整理汇总了Python中mne.preprocessing.ICA.score_sources方法的典型用法代码示例。如果您正苦于以下问题:Python ICA.score_sources方法的具体用法?Python ICA.score_sources怎么用?Python ICA.score_sources使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mne.preprocessing.ICA的用法示例。


在下文中一共展示了ICA.score_sources方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_ica_additional

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import score_sources [as 别名]

#.........这里部分代码省略.........
            return getattr(x, y).dtype

        for attr in attrs.split():
            assert_equal(f(ica_read, attr), f(ica, attr))

        ica.n_pca_components = 4
        ica_read.n_pca_components = 4

        ica.exclude = []
        ica.save(test_ica_fname)
        ica_read = read_ica(test_ica_fname)
        for attr in ['mixing_matrix_', 'unmixing_matrix_', 'pca_components_',
                     'pca_mean_', 'pca_explained_variance_',
                     'pre_whitener_']:
            assert_array_almost_equal(getattr(ica, attr),
                                      getattr(ica_read, attr))

        assert (ica.ch_names == ica_read.ch_names)
        assert (isinstance(ica_read.info, Info))

        sources = ica.get_sources(raw)[:, :][0]
        sources2 = ica_read.get_sources(raw)[:, :][0]
        assert_array_almost_equal(sources, sources2)

        _raw1 = ica.apply(raw, exclude=[1])
        _raw2 = ica_read.apply(raw, exclude=[1])
        assert_array_almost_equal(_raw1[:, :][0], _raw2[:, :][0])

    os.remove(test_ica_fname)
    # check score funcs
    for name, func in get_score_funcs().items():
        if name in score_funcs_unsuited:
            continue
        scores = ica.score_sources(raw, target='EOG 061', score_func=func,
                                   start=0, stop=10)
        assert (ica.n_components_ == len(scores))

    # check univariate stats
    scores = ica.score_sources(raw, start=0, stop=50, score_func=stats.skew)
    # check exception handling
    pytest.raises(ValueError, ica.score_sources, raw,
                  target=np.arange(1))

    params = []
    params += [(None, -1, slice(2), [0, 1])]  # variance, kurtosis params
    params += [(None, 'MEG 1531')]  # ECG / EOG channel params
    for idx, ch_name in product(*params):
        ica.detect_artifacts(raw, start_find=0, stop_find=50, ecg_ch=ch_name,
                             eog_ch=ch_name, skew_criterion=idx,
                             var_criterion=idx, kurt_criterion=idx)

    # Make sure detect_artifacts marks the right components.
    # For int criterion, the doc says "E.g. range(2) would return the two
    # sources with the highest score". Assert that's what it does.
    # Only test for skew, since it's always the same code.
    ica.exclude = []
    ica.detect_artifacts(raw, start_find=0, stop_find=50, ecg_ch=None,
                         eog_ch=None, skew_criterion=0,
                         var_criterion=None, kurt_criterion=None)
    assert np.abs(scores[ica.exclude]) == np.max(np.abs(scores))

    evoked = epochs.average()
    evoked_data = evoked.data.copy()
    raw_data = raw[:][0].copy()
    epochs_data = epochs.get_data().copy()
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:69,代码来源:test_ica.py

示例2: test_ica_additional

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import score_sources [as 别名]

#.........这里部分代码省略.........
            return getattr(x, y).dtype

        for attr in attrs.split():
            assert_equal(f(ica_read, attr), f(ica, attr))

        ica.n_pca_components = 4
        ica_read.n_pca_components = 4

        ica.exclude = []
        ica.save(test_ica_fname)
        ica_read = read_ica(test_ica_fname)
        for attr in ['mixing_matrix_', 'unmixing_matrix_', 'pca_components_',
                     'pca_mean_', 'pca_explained_variance_',
                     '_pre_whitener']:
            assert_array_almost_equal(getattr(ica, attr),
                                      getattr(ica_read, attr))

        assert_true(ica.ch_names == ica_read.ch_names)
        assert_true(isinstance(ica_read.info, Info))

        sources = ica.get_sources(raw)[:, :][0]
        sources2 = ica_read.get_sources(raw)[:, :][0]
        assert_array_almost_equal(sources, sources2)

        _raw1 = ica.apply(raw, exclude=[1])
        _raw2 = ica_read.apply(raw, exclude=[1])
        assert_array_almost_equal(_raw1[:, :][0], _raw2[:, :][0])

    os.remove(test_ica_fname)
    # check scrore funcs
    for name, func in get_score_funcs().items():
        if name in score_funcs_unsuited:
            continue
        scores = ica.score_sources(raw, target='EOG 061', score_func=func,
                                   start=0, stop=10)
        assert_true(ica.n_components_ == len(scores))

    # check univariate stats
    scores = ica.score_sources(raw, score_func=stats.skew)
    # check exception handling
    assert_raises(ValueError, ica.score_sources, raw,
                  target=np.arange(1))

    params = []
    params += [(None, -1, slice(2), [0, 1])]  # varicance, kurtosis idx params
    params += [(None, 'MEG 1531')]  # ECG / EOG channel params
    for idx, ch_name in product(*params):
        ica.detect_artifacts(raw, start_find=0, stop_find=50, ecg_ch=ch_name,
                             eog_ch=ch_name, skew_criterion=idx,
                             var_criterion=idx, kurt_criterion=idx)
    with warnings.catch_warnings(record=True):
        idx, scores = ica.find_bads_ecg(raw, method='ctps')
        assert_equal(len(scores), ica.n_components_)
        idx, scores = ica.find_bads_ecg(raw, method='correlation')
        assert_equal(len(scores), ica.n_components_)
        idx, scores = ica.find_bads_ecg(epochs, method='ctps')
        assert_equal(len(scores), ica.n_components_)
        assert_raises(ValueError, ica.find_bads_ecg, epochs.average(),
                      method='ctps')
        assert_raises(ValueError, ica.find_bads_ecg, raw,
                      method='crazy-coupling')

        idx, scores = ica.find_bads_eog(raw)
        assert_equal(len(scores), ica.n_components_)
        raw.info['chs'][raw.ch_names.index('EOG 061') - 1]['kind'] = 202
        idx, scores = ica.find_bads_eog(raw)
开发者ID:mdclarke,项目名称:mne-python,代码行数:70,代码来源:test_ica.py

示例3: test_ica_additional

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import score_sources [as 别名]

#.........这里部分代码省略.........

        ica.n_pca_components = 4
        ica_read.n_pca_components = 4

        ica.exclude = []
        ica.save(test_ica_fname)
        ica_read = read_ica(test_ica_fname)
        for attr in [
            "mixing_matrix_",
            "unmixing_matrix_",
            "pca_components_",
            "pca_mean_",
            "pca_explained_variance_",
            "_pre_whitener",
        ]:
            assert_array_almost_equal(getattr(ica, attr), getattr(ica_read, attr))

        assert_true(ica.ch_names == ica_read.ch_names)
        assert_true(isinstance(ica_read.info, Info))

        sources = ica.get_sources(raw)[:, :][0]
        sources2 = ica_read.get_sources(raw)[:, :][0]
        assert_array_almost_equal(sources, sources2)

        _raw1 = ica.apply(raw, exclude=[1])
        _raw2 = ica_read.apply(raw, exclude=[1])
        assert_array_almost_equal(_raw1[:, :][0], _raw2[:, :][0])

    os.remove(test_ica_fname)
    # check scrore funcs
    for name, func in score_funcs.items():
        if name in score_funcs_unsuited:
            continue
        scores = ica.score_sources(raw, target="EOG 061", score_func=func, start=0, stop=10)
        assert_true(ica.n_components_ == len(scores))

    # check univariate stats
    scores = ica.score_sources(raw, score_func=stats.skew)
    # check exception handling
    assert_raises(ValueError, ica.score_sources, raw, target=np.arange(1))

    params = []
    params += [(None, -1, slice(2), [0, 1])]  # varicance, kurtosis idx params
    params += [(None, "MEG 1531")]  # ECG / EOG channel params
    for idx, ch_name in product(*params):
        ica.detect_artifacts(
            raw,
            start_find=0,
            stop_find=50,
            ecg_ch=ch_name,
            eog_ch=ch_name,
            skew_criterion=idx,
            var_criterion=idx,
            kurt_criterion=idx,
        )

    idx, scores = ica.find_bads_ecg(raw, method="ctps")
    assert_equal(len(scores), ica.n_components_)
    idx, scores = ica.find_bads_ecg(raw, method="correlation")
    assert_equal(len(scores), ica.n_components_)
    idx, scores = ica.find_bads_ecg(epochs, method="ctps")
    assert_equal(len(scores), ica.n_components_)
    assert_raises(ValueError, ica.find_bads_ecg, epochs.average(), method="ctps")
    assert_raises(ValueError, ica.find_bads_ecg, raw, method="crazy-coupling")

    idx, scores = ica.find_bads_eog(raw)
开发者ID:rgoj,项目名称:mne-python,代码行数:70,代码来源:test_ica.py


注:本文中的mne.preprocessing.ICA.score_sources方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。