本文整理汇总了Python中mne.preprocessing.ICA.pca_explained_variance_方法的典型用法代码示例。如果您正苦于以下问题:Python ICA.pca_explained_variance_方法的具体用法?Python ICA.pca_explained_variance_怎么用?Python ICA.pca_explained_variance_使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mne.preprocessing.ICA
的用法示例。
在下文中一共展示了ICA.pca_explained_variance_方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_ica_additional
# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import pca_explained_variance_ [as 别名]
#.........这里部分代码省略.........
ica.exclude = []
ica.pick_sources_raw(raw, exclude=[0, 1])
assert_true(ica.exclude == [0, 1])
# -- remove duplicates
ica.exclude += [1]
ica.pick_sources_raw(raw, exclude=[0, 1])
assert_true(ica.exclude == [0, 1])
# test basic include
ica.exclude = []
ica.pick_sources_raw(raw, include=[1])
ica_raw = ica.sources_as_raw(raw)
assert_true(ica.exclude == [ica_raw.ch_names.index(e) for e in
ica_raw.info['bads']])
# test filtering
d1 = ica_raw._data[0].copy()
with warnings.catch_warnings(record=True): # dB warning
ica_raw.filter(4, 20)
assert_true((d1 != ica_raw._data[0]).any())
d1 = ica_raw._data[0].copy()
with warnings.catch_warnings(record=True): # dB warning
ica_raw.notch_filter([10])
assert_true((d1 != ica_raw._data[0]).any())
ica.n_pca_components = 2
ica.save(test_ica_fname)
ica_read = read_ica(test_ica_fname)
assert_true(ica.n_pca_components == ica_read.n_pca_components)
# check type consistency
attrs = ('mixing_matrix_ unmixing_matrix_ pca_components_ '
'pca_explained_variance_ _pre_whitener')
f = lambda x, y: getattr(x, y).dtype
for attr in attrs.split():
assert_equal(f(ica_read, attr), f(ica, attr))
ica.n_pca_components = 4
ica_read.n_pca_components = 4
ica.exclude = []
ica.save(test_ica_fname)
ica_read = read_ica(test_ica_fname)
for attr in ['mixing_matrix_', 'unmixing_matrix_', 'pca_components_',
'pca_mean_', 'pca_explained_variance_',
'_pre_whitener']:
assert_array_almost_equal(getattr(ica, attr),
getattr(ica_read, attr))
assert_true(ica.ch_names == ica_read.ch_names)
assert_true(isinstance(ica_read.info, Info))
assert_raises(RuntimeError, ica_read.decompose_raw, raw)
sources = ica.get_sources_raw(raw)
sources2 = ica_read.get_sources_raw(raw)
assert_array_almost_equal(sources, sources2)
_raw1 = ica.pick_sources_raw(raw, exclude=[1])
_raw2 = ica_read.pick_sources_raw(raw, exclude=[1])
assert_array_almost_equal(_raw1[:, :][0], _raw2[:, :][0])
os.remove(test_ica_fname)
# check scrore funcs
for name, func in score_funcs.items():
if name in score_funcs_unsuited:
示例2: test_ica_additional
# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import pca_explained_variance_ [as 别名]
#.........这里部分代码省略.........
ica.save(test_ica_fname)
ica_read = read_ica(test_ica_fname)
assert_true(ica.exclude == ica_read.exclude)
assert_equal(ica.labels_, ica_read.labels_)
ica.exclude = []
ica.apply(raw, exclude=[1])
assert_true(ica.exclude == [])
ica.exclude = [0, 1]
ica.apply(raw, exclude=[1])
assert_true(ica.exclude == [0, 1])
ica_raw = ica.get_sources(raw)
assert_true(ica.exclude == [ica_raw.ch_names.index(e) for e in
ica_raw.info['bads']])
# test filtering
d1 = ica_raw._data[0].copy()
with warnings.catch_warnings(record=True): # dB warning
ica_raw.filter(4, 20)
assert_true((d1 != ica_raw._data[0]).any())
d1 = ica_raw._data[0].copy()
with warnings.catch_warnings(record=True): # dB warning
ica_raw.notch_filter([10])
assert_true((d1 != ica_raw._data[0]).any())
ica.n_pca_components = 2
ica.save(test_ica_fname)
ica_read = read_ica(test_ica_fname)
assert_true(ica.n_pca_components == ica_read.n_pca_components)
# check type consistency
attrs = ('mixing_matrix_ unmixing_matrix_ pca_components_ '
'pca_explained_variance_ _pre_whitener')
def f(x, y):
return getattr(x, y).dtype
for attr in attrs.split():
assert_equal(f(ica_read, attr), f(ica, attr))
ica.n_pca_components = 4
ica_read.n_pca_components = 4
ica.exclude = []
ica.save(test_ica_fname)
ica_read = read_ica(test_ica_fname)
for attr in ['mixing_matrix_', 'unmixing_matrix_', 'pca_components_',
'pca_mean_', 'pca_explained_variance_',
'_pre_whitener']:
assert_array_almost_equal(getattr(ica, attr),
getattr(ica_read, attr))
assert_true(ica.ch_names == ica_read.ch_names)
assert_true(isinstance(ica_read.info, Info))
sources = ica.get_sources(raw)[:, :][0]
sources2 = ica_read.get_sources(raw)[:, :][0]
assert_array_almost_equal(sources, sources2)
_raw1 = ica.apply(raw, exclude=[1])
_raw2 = ica_read.apply(raw, exclude=[1])
assert_array_almost_equal(_raw1[:, :][0], _raw2[:, :][0])
os.remove(test_ica_fname)
# check scrore funcs
示例3: test_ica_additional
# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import pca_explained_variance_ [as 别名]
#.........这里部分代码省略.........
ica.apply(raw)
ica.exclude = []
ica.apply(raw, exclude=[1])
assert (ica.exclude == [])
ica.exclude = [0, 1]
ica.apply(raw, exclude=[1])
assert (ica.exclude == [0, 1])
ica_raw = ica.get_sources(raw)
assert (ica.exclude == [ica_raw.ch_names.index(e) for e in
ica_raw.info['bads']])
# test filtering
d1 = ica_raw._data[0].copy()
ica_raw.filter(4, 20, fir_design='firwin2')
assert_equal(ica_raw.info['lowpass'], 20.)
assert_equal(ica_raw.info['highpass'], 4.)
assert ((d1 != ica_raw._data[0]).any())
d1 = ica_raw._data[0].copy()
ica_raw.notch_filter([10], trans_bandwidth=10, fir_design='firwin')
assert ((d1 != ica_raw._data[0]).any())
ica.n_pca_components = 2
ica.method = 'fake'
ica.save(test_ica_fname)
ica_read = read_ica(test_ica_fname)
assert (ica.n_pca_components == ica_read.n_pca_components)
assert_equal(ica.method, ica_read.method)
assert_equal(ica.labels_, ica_read.labels_)
# check type consistency
attrs = ('mixing_matrix_ unmixing_matrix_ pca_components_ '
'pca_explained_variance_ pre_whitener_')
def f(x, y):
return getattr(x, y).dtype
for attr in attrs.split():
assert_equal(f(ica_read, attr), f(ica, attr))
ica.n_pca_components = 4
ica_read.n_pca_components = 4
ica.exclude = []
ica.save(test_ica_fname)
ica_read = read_ica(test_ica_fname)
for attr in ['mixing_matrix_', 'unmixing_matrix_', 'pca_components_',
'pca_mean_', 'pca_explained_variance_',
'pre_whitener_']:
assert_array_almost_equal(getattr(ica, attr),
getattr(ica_read, attr))
assert (ica.ch_names == ica_read.ch_names)
assert (isinstance(ica_read.info, Info))
sources = ica.get_sources(raw)[:, :][0]
sources2 = ica_read.get_sources(raw)[:, :][0]
assert_array_almost_equal(sources, sources2)
_raw1 = ica.apply(raw, exclude=[1])
_raw2 = ica_read.apply(raw, exclude=[1])
assert_array_almost_equal(_raw1[:, :][0], _raw2[:, :][0])
os.remove(test_ica_fname)
# check score funcs