当前位置: 首页>>代码示例>>Python>>正文


Python ICA.save方法代码示例

本文整理汇总了Python中mne.preprocessing.ICA.save方法的典型用法代码示例。如果您正苦于以下问题:Python ICA.save方法的具体用法?Python ICA.save怎么用?Python ICA.save使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mne.preprocessing.ICA的用法示例。


在下文中一共展示了ICA.save方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_n_components_and_max_pca_components_none

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import save [as 别名]
def test_n_components_and_max_pca_components_none(method):
    """Test n_components and max_pca_components=None."""
    _skip_check_picard(method)
    raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data()
    events = read_events(event_name)
    picks = pick_types(raw.info, eeg=True, meg=False)
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), preload=True)

    max_pca_components = None
    n_components = None
    random_state = 12345

    tempdir = _TempDir()
    output_fname = op.join(tempdir, 'test_ica-ica.fif')
    ica = ICA(max_pca_components=max_pca_components, method=method,
              n_components=n_components, random_state=random_state)
    with pytest.warns(None):  # convergence
        ica.fit(epochs)
    ica.save(output_fname)

    ica = read_ica(output_fname)

    # ICA.fit() replaced max_pca_components, which was previously None,
    # with the appropriate integer value.
    assert_equal(ica.max_pca_components, epochs.info['nchan'])
    assert ica.n_components is None
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:29,代码来源:test_ica.py

示例2: test_n_components_none

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import save [as 别名]
def test_n_components_none():
    """Test n_components=None."""
    raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data()
    events = read_events(event_name)
    picks = pick_types(raw.info, eeg=True, meg=False)
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), preload=True)

    max_pca_components = 10
    n_components = None
    random_state = 12345

    tempdir = _TempDir()
    output_fname = op.join(tempdir, 'test_ica-ica.fif')

    ica = ICA(max_pca_components=max_pca_components,
              n_components=n_components, random_state=random_state)
    with warnings.catch_warnings(record=True):  # convergence
        ica.fit(epochs)
    ica.save(output_fname)

    ica = read_ica(output_fname)

    # ICA.fit() replaced max_pca_components, which was previously None,
    # with the appropriate integer value.
    assert_equal(ica.max_pca_components, 10)
    assert_is_none(ica.n_components)
开发者ID:Lx37,项目名称:mne-python,代码行数:29,代码来源:test_ica.py

示例3: apply_ica

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import save [as 别名]
def apply_ica(fname_filtered, n_components=0.99, decim=None):

    ''' Applies ICA to a list of (filtered) raw files. '''

    import mne
    from mne.preprocessing import ICA
    import os


    if isinstance(fname_filtered, list):
        fnfilt = fname_filtered
    else:
        if isinstance(fname_filtered, str):
            fnfilt = list([fname_filtered]) 
        else:
            fnfilt = list(fname_filtered)

    # loop across all filenames
    for fname in fnfilt:                    
        name  = os.path.split(fname)[1]
        print ">>>> perform ICA signal decomposition on :  "+name
        # load filtered data
        raw = mne.io.Raw(fname,preload=True)
        picks = mne.pick_types(raw.info, meg=True, exclude='bads')
        # ICA decomposition
        ica = ICA(n_components=n_components, max_pca_components=None)

        ica.fit(raw, picks=picks, decim=decim, reject={'mag': 5e-12})

        # save ICA object 
        fnica_out = fname.strip('-raw.fif') + '-ica.fif'
        # fnica_out = fname[0:len(fname)-4]+'-ica.fif'
        ica.save(fnica_out)
开发者ID:dengemann,项目名称:jumeg-1,代码行数:35,代码来源:jumeg_preprocessing.py

示例4: apply_ica

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import save [as 别名]
def apply_ica(fname_filtered, n_components=0.99, decim=None,
              reject={'mag': 5e-12}, ica_method='fastica',
              flow=None, fhigh=None, verbose=True):

    ''' Applies ICA to a list of (filtered) raw files. '''

    from mne.preprocessing import ICA

    fnfilt = get_files_from_list(fname_filtered)

    # loop across all filenames
    for fname in fnfilt:
        name = os.path.split(fname)[1]
        print ">>>> perform ICA signal decomposition on :  " + name
        # load filtered data
        raw = mne.io.Raw(fname, preload=True)
        picks = mne.pick_types(raw.info, meg=True, ref_meg=False, exclude='bads')

        # check if data to estimate the optimal
        # de-mixing matrix should be filtered
        if flow or fhigh:
            from jumeg.filter import jumeg_filter

            # define filter type
            if not flow:
                filter_type = 'lp'
                filter_info = "     --> filter parameter    : filter type=low pass %dHz" % flow
            elif not fhigh:
                filter_type = 'hp'
                filter_info = "     --> filter parameter    : filter type=high pass %dHz" % flow
            else:
                filter_type = 'bp'
                filter_info = "     --> filter parameter: filter type=band pass %d-%dHz" % (flow, fhigh)

            if verbose:
                print ">>>> NOTE: Optimal cleaning parameter are estimated from filtered data!"
                print filter_info

            fi_mne_notch = jumeg_filter(fcut1=flow, fcut2=fhigh, filter_type=filter_type,
                                        remove_dcoffset=False,
                                        sampling_frequency=raw.info['sfreq'])
            fi_mne_notch.apply_filter(raw._data, picks=picks)

        # ICA decomposition
        ica = ICA(method=ica_method, n_components=n_components,
                  max_pca_components=None)

        ica.fit(raw, picks=picks, decim=decim, reject=reject)

        # save ICA object
        fnica_out = fname[:fname.rfind(ext_raw)] + ext_ica
        # fnica_out = fname[0:len(fname)-4]+'-ica.fif'
        ica.save(fnica_out)
开发者ID:VolkanChen,项目名称:jumeg,代码行数:55,代码来源:jumeg_preprocessing.py

示例5: run_ica

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import save [as 别名]
def run_ica(subject_id):
    subject = "sub%03d" % subject_id
    print("processing subject: %s" % subject)
    data_path = op.join(meg_dir, subject)
    for run in range(1, 7):
        print("Run: %s" % run)
        run_fname = op.join(data_path, 'run_%02d_filt_sss_raw.fif' % run)
        if not os.path.exists(run_fname):
            warn('Could not find file %s. '
                 'Skipping run %s for subject %s.' % (run_fname, run, subject))
            continue
        raw = mne.io.read_raw_fif(run_fname, add_eeg_ref=False)
        ica_name = op.join(meg_dir, subject, 'run_%02d-ica.fif' % run)

        ica = ICA(method='fastica', random_state=42, n_components=0.98)
        picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=False,
                               stim=False, exclude='bads')
        ica.fit(raw, picks=picks, reject=dict(grad=4000e-13, mag=4e-12),
                decim=8)
        ica.save(ica_name)
开发者ID:mne-tools,项目名称:mne-biomag-group-demo,代码行数:22,代码来源:04-run_ica.py

示例6: test_ica_additional

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import save [as 别名]
def test_ica_additional(method):
    """Test additional ICA functionality."""
    _skip_check_picard(method)

    tempdir = _TempDir()
    stop2 = 500
    raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data()
    raw.del_proj()  # avoid warnings
    raw.set_annotations(Annotations([0.5], [0.5], ['BAD']))
    # XXX This breaks the tests :(
    # raw.info['bads'] = [raw.ch_names[1]]
    test_cov = read_cov(test_cov_name)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')[1::2]
    epochs = Epochs(raw, events, None, tmin, tmax, picks=picks,
                    baseline=(None, 0), preload=True, proj=False)
    epochs.decimate(3, verbose='error')
    assert len(epochs) == 4

    # test if n_components=None works
    ica = ICA(n_components=None, max_pca_components=None,
              n_pca_components=None, random_state=0, method=method, max_iter=1)
    with pytest.warns(UserWarning, match='did not converge'):
        ica.fit(epochs)
    # for testing eog functionality
    picks2 = np.concatenate([picks, pick_types(raw.info, False, eog=True)])
    epochs_eog = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks2,
                        baseline=(None, 0), preload=True)
    del picks2

    test_cov2 = test_cov.copy()
    ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4,
              n_pca_components=4, method=method)
    assert (ica.info is None)
    with pytest.warns(RuntimeWarning, match='normalize_proj'):
        ica.fit(raw, picks[:5])
    assert (isinstance(ica.info, Info))
    assert (ica.n_components_ < 5)

    ica = ICA(n_components=3, max_pca_components=4, method=method,
              n_pca_components=4, random_state=0)
    pytest.raises(RuntimeError, ica.save, '')

    ica.fit(raw, picks=[1, 2, 3, 4, 5], start=start, stop=stop2)

    # check passing a ch_name to find_bads_ecg
    with pytest.warns(RuntimeWarning, match='longer'):
        _, scores_1 = ica.find_bads_ecg(raw)
        _, scores_2 = ica.find_bads_ecg(raw, raw.ch_names[1])
    assert scores_1[0] != scores_2[0]

    # test corrmap
    ica2 = ica.copy()
    ica3 = ica.copy()
    corrmap([ica, ica2], (0, 0), threshold='auto', label='blinks', plot=True,
            ch_type="mag")
    corrmap([ica, ica2], (0, 0), threshold=2, plot=False, show=False)
    assert (ica.labels_["blinks"] == ica2.labels_["blinks"])
    assert (0 in ica.labels_["blinks"])
    # test retrieval of component maps as arrays
    components = ica.get_components()
    template = components[:, 0]
    EvokedArray(components, ica.info, tmin=0.).plot_topomap([0], time_unit='s')

    corrmap([ica, ica3], template, threshold='auto', label='blinks', plot=True,
            ch_type="mag")
    assert (ica2.labels_["blinks"] == ica3.labels_["blinks"])

    plt.close('all')

    ica_different_channels = ICA(n_components=2, random_state=0).fit(
        raw, picks=[2, 3, 4, 5])
    pytest.raises(ValueError, corrmap, [ica_different_channels, ica], (0, 0))

    # test warnings on bad filenames
    ica_badname = op.join(op.dirname(tempdir), 'test-bad-name.fif.gz')
    with pytest.warns(RuntimeWarning, match='-ica.fif'):
        ica.save(ica_badname)
    with pytest.warns(RuntimeWarning, match='-ica.fif'):
        read_ica(ica_badname)

    # test decim
    ica = ICA(n_components=3, max_pca_components=4,
              n_pca_components=4, method=method, max_iter=1)
    raw_ = raw.copy()
    for _ in range(3):
        raw_.append(raw_)
    n_samples = raw_._data.shape[1]
    with pytest.warns(UserWarning, match='did not converge'):
        ica.fit(raw, picks=picks[:5], decim=3)
    assert raw_._data.shape[1] == n_samples

    # test expl var
    ica = ICA(n_components=1.0, max_pca_components=4,
              n_pca_components=4, method=method, max_iter=1)
    with pytest.warns(UserWarning, match='did not converge'):
        ica.fit(raw, picks=None, decim=3)
    assert (ica.n_components_ == 4)
    ica_var = _ica_explained_variance(ica, raw, normalize=True)
#.........这里部分代码省略.........
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:103,代码来源:test_ica.py

示例7:

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import save [as 别名]
fig = ica.plot_scores(scores, exclude=eog_inds,
                      title=title % ('eog', subject))
fig.savefig(save_folder + "pics/%s_%s_eog_scores.png" % (subject,
                                                         condition))
                                                         

fig = ica.plot_sources(eog_average, exclude=None)
fig.savefig(save_folder + "pics/%s_%s_eog_source.png" % (subject,
                                                         condition))

fig = ica.plot_components(ica.exclude, title=title % ('eog', subject),
                          colorbar=True)
fig.savefig(save_folder + "pics/%s_%s_eog_component.png" % (subject,
                                                            condition))
fig = ica.plot_overlay(eog_average, exclude=None, show=False)                                                                
fig.savefig(save_folder + "pics/%s_%s_eog_excluded.png" % (subject,
                                                            condition))


# del eog_epochs, eog_average

##########################################################################
# Apply the solution to Raw, Epochs or Evoked like this:
raw_ica = ica.apply(raw)
ica.save(save_folder + "%s_%s-ica.fif" % (subject, condition))  # save ICA
# componenets
# Save raw with ICA removed
raw_ica.save(save_folder + "%s_%s_filtered_ica_mc_tsss-raw.fif" % (
    subject, condition),
             overwrite=True)
开发者ID:MadsJensen,项目名称:RP_scripts,代码行数:32,代码来源:ICA_interactive.py

示例8: preprocess_ICA_fif_to_ts

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import save [as 别名]
def preprocess_ICA_fif_to_ts(fif_file, ECG_ch_name, EoG_ch_name, l_freq, h_freq, down_sfreq, variance, is_sensor_space, data_type):
    import os
    import numpy as np

    import mne
    from mne.io import Raw
    from mne.preprocessing import ICA, read_ica
    from mne.preprocessing import create_ecg_epochs, create_eog_epochs
    from mne.report import Report

    from nipype.utils.filemanip import split_filename as split_f

    report = Report()

    subj_path, basename, ext = split_f(fif_file)
    (data_path, sbj_name) = os.path.split(subj_path)
    print data_path

    # Read raw
    # If None the compensation in the data is not modified.
    # If set to n, e.g. 3, apply gradient compensation of grade n as for
    # CTF systems (compensation=3)
    raw = Raw(fif_file, preload=True)

    # select sensors
    select_sensors = mne.pick_types(raw.info, meg=True, ref_meg=False,
                                    exclude='bads')
    picks_meeg = mne.pick_types(raw.info, meg=True, eeg=True, exclude='bads')

    # save electrode locations
    sens_loc = [raw.info['chs'][i]['loc'][:3] for i in select_sensors]
    sens_loc = np.array(sens_loc)

    channel_coords_file = os.path.abspath("correct_channel_coords.txt")
    print '*** ' + channel_coords_file + '***'
    np.savetxt(channel_coords_file, sens_loc, fmt='%s')

    # save electrode names
    sens_names = np.array([raw.ch_names[pos] for pos in select_sensors],dtype = "str")

    # AP 21032016 
#    channel_names_file = os.path.join(data_path, "correct_channel_names.txt") 
    channel_names_file = os.path.abspath("correct_channel_names.txt")
    np.savetxt(channel_names_file,sens_names , fmt = '%s')
 
    ### filtering + downsampling
    raw.filter(l_freq=l_freq, h_freq=h_freq, picks=picks_meeg,
               method='iir', n_jobs=8)
#    raw.filter(l_freq = l_freq, h_freq = h_freq, picks = picks_meeg,
#               method='iir')
#    raw.resample(sfreq=down_sfreq, npad=0)

    ### 1) Fit ICA model using the FastICA algorithm
    # Other available choices are `infomax` or `extended-infomax`
    # We pass a float value between 0 and 1 to select n_components based on the
    # percentage of variance explained by the PCA components.
    ICA_title = 'Sources related to %s artifacts (red)'
    is_show = False # visualization
    reject = dict(mag=4e-12, grad=4000e-13)

    # check if we have an ICA, if yes, we load it
    ica_filename = os.path.join(subj_path,basename + "-ica.fif")  
    if os.path.exists(ica_filename) is False:
        ica = ICA(n_components=variance, method='fastica', max_iter=500) # , max_iter=500
        ica.fit(raw, picks=select_sensors, reject=reject) # decim = 3, 

        has_ICA = False
    else:
        has_ICA = True
        print ica_filename + '   exists!!!'
        ica = read_ica(ica_filename)
        ica.exclude = []

    # 2) identify bad components by analyzing latent sources.
    # generate ECG epochs use detection via phase statistics

    # if we just have exclude channels we jump these steps
#    if len(ica.exclude)==0:
    n_max_ecg = 3
    n_max_eog = 2

    # check if ECG_ch_name is in the raw channels
    if ECG_ch_name in raw.info['ch_names']:
        ecg_epochs = create_ecg_epochs(raw, tmin=-.5, tmax=.5,
                                       picks=select_sensors,
                                       ch_name=ECG_ch_name)
    # if not  a synthetic ECG channel is created from cross channel average
    else:
        ecg_epochs = create_ecg_epochs(raw, tmin=-.5, tmax=.5,
                                       picks=select_sensors)

    # ICA for ECG artifact
    # threshold=0.25 come default
    ecg_inds, scores = ica.find_bads_ecg(ecg_epochs, method='ctps')
    print scores
    print '\n len ecg_inds *** ' + str(len(ecg_inds)) + '***\n'
    if len(ecg_inds) > 0:
        ecg_evoked = ecg_epochs.average()

        fig1 = ica.plot_scores(scores, exclude=ecg_inds,
#.........这里部分代码省略.........
开发者ID:davidmeunier79,项目名称:neuropype_ephy,代码行数:103,代码来源:preproc.py

示例9: test_ica_additional

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import save [as 别名]
def test_ica_additional():
    """Test additional functionality
    """
    stop2 = 500

    test_cov2 = deepcopy(test_cov)
    ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4,
              n_pca_components=4)
    assert_true(ica.info is None)
    ica.decompose_raw(raw, picks[:5])
    assert_true(isinstance(ica.info, Info))
    assert_true(ica.n_components_ < 5)

    ica = ICA(n_components=3, max_pca_components=4,
              n_pca_components=4)
    assert_raises(RuntimeError, ica.save, '')
    ica.decompose_raw(raw, picks=None, start=start, stop=stop2)

    # epochs extraction from raw fit
    assert_raises(RuntimeError, ica.get_sources_epochs, epochs)

    # test reading and writing
    test_ica_fname = op.join(op.dirname(tempdir), 'ica_test.fif')
    for cov in (None, test_cov):
        ica = ICA(noise_cov=cov, n_components=3, max_pca_components=4,
                  n_pca_components=4)
        ica.decompose_raw(raw, picks=picks, start=start, stop=stop2)
        sources = ica.get_sources_epochs(epochs)
        assert_true(sources.shape[1] == ica.n_components_)

        for exclude in [[], [0]]:
            ica.exclude = [0]
            ica.save(test_ica_fname)
            ica_read = read_ica(test_ica_fname)
            assert_true(ica.exclude == ica_read.exclude)
            # test pick merge -- add components
            ica.pick_sources_raw(raw, exclude=[1])
            assert_true(ica.exclude == [0, 1])
            #                 -- only as arg
            ica.exclude = []
            ica.pick_sources_raw(raw, exclude=[0, 1])
            assert_true(ica.exclude == [0, 1])
            #                 -- remove duplicates
            ica.exclude += [1]
            ica.pick_sources_raw(raw, exclude=[0, 1])
            assert_true(ica.exclude == [0, 1])

            ica_raw = ica.sources_as_raw(raw)
            assert_true(ica.exclude == [ica_raw.ch_names.index(e) for e in
                                        ica_raw.info['bads']])

        ica.n_pca_components = 2
        ica.save(test_ica_fname)
        ica_read = read_ica(test_ica_fname)
        assert_true(ica.n_pca_components ==
                    ica_read.n_pca_components)
        ica.n_pca_components = 4
        ica_read.n_pca_components = 4

        ica.exclude = []
        ica.save(test_ica_fname)
        ica_read = read_ica(test_ica_fname)

        assert_true(ica.ch_names == ica_read.ch_names)
        assert_true(isinstance(ica_read.info, Info))  # XXX improve later
        assert_true(np.allclose(ica.mixing_matrix_, ica_read.mixing_matrix_,
                                rtol=1e-16, atol=1e-32))
        assert_array_equal(ica.pca_components_,
                           ica_read.pca_components_)
        assert_array_equal(ica.pca_mean_, ica_read.pca_mean_)
        assert_array_equal(ica.pca_explained_variance_,
                           ica_read.pca_explained_variance_)
        assert_array_equal(ica._pre_whitener, ica_read._pre_whitener)

        # assert_raises(RuntimeError, ica_read.decompose_raw, raw)
        sources = ica.get_sources_raw(raw)
        sources2 = ica_read.get_sources_raw(raw)
        assert_array_almost_equal(sources, sources2)

        _raw1 = ica.pick_sources_raw(raw, exclude=[1])
        _raw2 = ica_read.pick_sources_raw(raw, exclude=[1])
        assert_array_almost_equal(_raw1[:, :][0], _raw2[:, :][0])

    os.remove(test_ica_fname)
    # check scrore funcs
    for name, func in score_funcs.items():
        if name in score_funcs_unsuited:
            continue
        scores = ica.find_sources_raw(raw, target='EOG 061', score_func=func,
                                      start=0, stop=10)
        assert_true(ica.n_components_ == len(scores))

    # check univariate stats
    scores = ica.find_sources_raw(raw, score_func=stats.skew)
    # check exception handling
    assert_raises(ValueError, ica.find_sources_raw, raw,
                  target=np.arange(1))

    params = []
    params += [(None, -1, slice(2), [0, 1])]  # varicance, kurtosis idx params
#.........这里部分代码省略.........
开发者ID:pauldelprato,项目名称:mne-python,代码行数:103,代码来源:test_ica.py

示例10: test_ica_additional

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import save [as 别名]
def test_ica_additional():
    """Test additional ICA functionality
    """
    stop2 = 500
    raw = io.Raw(raw_fname, preload=True).crop(0, stop, False).crop(1.5)
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')
    test_cov = read_cov(test_cov_name)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')
    epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), preload=True)
    # for testing eog functionality
    picks2 = pick_types(raw.info, meg=True, stim=False, ecg=False,
                        eog=True, exclude='bads')
    epochs_eog = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks2,
                        baseline=(None, 0), preload=True)

    test_cov2 = deepcopy(test_cov)
    ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4,
              n_pca_components=4)
    assert_true(ica.info is None)
    ica.decompose_raw(raw, picks[:5])
    assert_true(isinstance(ica.info, Info))
    assert_true(ica.n_components_ < 5)

    ica = ICA(n_components=3, max_pca_components=4,
              n_pca_components=4)
    assert_raises(RuntimeError, ica.save, '')
    ica.decompose_raw(raw, picks=None, start=start, stop=stop2)

    # test warnings on bad filenames
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        ica_badname = op.join(op.dirname(tempdir), 'test-bad-name.fif.gz')
        ica.save(ica_badname)
        read_ica(ica_badname)
    assert_true(len(w) == 2)

    # test decim
    ica = ICA(n_components=3, max_pca_components=4,
              n_pca_components=4)
    raw_ = raw.copy()
    for _ in range(3):
        raw_.append(raw_)
    n_samples = raw_._data.shape[1]
    ica.decompose_raw(raw, picks=None, decim=3)
    assert_true(raw_._data.shape[1], n_samples)

    # test expl var
    ica = ICA(n_components=1.0, max_pca_components=4,
              n_pca_components=4)
    ica.decompose_raw(raw, picks=None, decim=3)
    assert_true(ica.n_components_ == 4)

    # epochs extraction from raw fit
    assert_raises(RuntimeError, ica.get_sources_epochs, epochs)
    # test reading and writing
    test_ica_fname = op.join(op.dirname(tempdir), 'test-ica.fif')
    for cov in (None, test_cov):
        ica = ICA(noise_cov=cov, n_components=2, max_pca_components=4,
                  n_pca_components=4)
        with warnings.catch_warnings(record=True):  # ICA does not converge
            ica.decompose_raw(raw, picks=picks, start=start, stop=stop2)
        sources = ica.get_sources_epochs(epochs)
        assert_true(ica.mixing_matrix_.shape == (2, 2))
        assert_true(ica.unmixing_matrix_.shape == (2, 2))
        assert_true(ica.pca_components_.shape == (4, len(picks)))
        assert_true(sources.shape[1] == ica.n_components_)

        for exclude in [[], [0]]:
            ica.exclude = [0]
            ica.save(test_ica_fname)
            ica_read = read_ica(test_ica_fname)
            assert_true(ica.exclude == ica_read.exclude)
            # test pick merge -- add components
            ica.pick_sources_raw(raw, exclude=[1])
            assert_true(ica.exclude == [0, 1])
            #                 -- only as arg
            ica.exclude = []
            ica.pick_sources_raw(raw, exclude=[0, 1])
            assert_true(ica.exclude == [0, 1])
            #                 -- remove duplicates
            ica.exclude += [1]
            ica.pick_sources_raw(raw, exclude=[0, 1])
            assert_true(ica.exclude == [0, 1])

            # test basic include
            ica.exclude = []
            ica.pick_sources_raw(raw, include=[1])

            ica_raw = ica.sources_as_raw(raw)
            assert_true(ica.exclude == [ica_raw.ch_names.index(e) for e in
                                        ica_raw.info['bads']])

        # test filtering
        d1 = ica_raw._data[0].copy()
        with warnings.catch_warnings(record=True):  # dB warning
            ica_raw.filter(4, 20)
#.........这里部分代码省略.........
开发者ID:eh123,项目名称:mne-python,代码行数:103,代码来源:test_ica.py

示例11: Raw

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import save [as 别名]
        if 'empty' not in cond:
            
            raw_path = ad._scratch_folder + '/' + input_files + '/' + subj
            in_fnames = ad.analysis_dict[subj][input_files][cond]['files'] 
            for fname in in_fnames:
                print 'In: ', fname
                # 1) Fit ICA model using the FastICA algorithm

                # Other available choices are `infomax` or `extended-infomax`
                # We pass a float value between 0 and 1 to select n_components based on the
                # percentage of variance explained by the PCA components.

                raw = Raw(fname, preload=True)
                picks = mne.pick_types(raw.info, meg=True, eeg=False, 
                        eog=False, ecg=False, stim=False, exclude='bads')

                if rank_estimate is None:
                    # estimate the rank only for the second VS task
                    # use 300 seconds
                    rank_estimate = raw.estimate_rank(tstart=240., tstop=540., picks=picks)
                    print 'Estimated raw to be of rank', rank_estimate

                ica = ICA(n_components=rank_estimate, max_pca_components = None, 
                        max_iter=256, method='fastica')

                ica.fit(raw, picks=picks, decim = 5, reject=dict(mag=4e-11, grad=4000e-12))
                # Save with information on excludes!
                ica.save(outdir + '/' + cond + '-ica.fif')
                

开发者ID:cjayb,项目名称:VSC-MEG-analysis,代码行数:30,代码来源:scr_run_estimate_ica.py

示例12: test_ica_additional

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import save [as 别名]
def test_ica_additional():
    """Test additional functionality
    """
    stop2 = 500

    test_cov2 = deepcopy(test_cov)
    ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4,
              n_pca_components=4)
    ica.decompose_raw(raw, picks[:5])
    assert_true(ica.n_components_ < 5)

    ica = ICA(n_components=3, max_pca_components=4,
              n_pca_components=4)
    assert_raises(RuntimeError, ica.save, '')
    ica.decompose_raw(raw, picks=None, start=start, stop=stop2)

    # epochs extraction from raw fit
    assert_raises(RuntimeError, ica.get_sources_epochs, epochs)

    # test reading and writing
    test_ica_fname = op.join(op.dirname(tempdir), 'ica_test.fif')
    for cov in (None, test_cov):
        ica = ICA(noise_cov=cov, n_components=3, max_pca_components=4,
                  n_pca_components=4)
        ica.decompose_raw(raw, picks=picks, start=start, stop=stop2)
        sources = ica.get_sources_epochs(epochs)
        assert_true(sources.shape[1] == ica.n_components_)

        for exclude in [[], [0]]:
            ica.exclude = [0]
            ica.save(test_ica_fname)
            ica_read = read_ica(test_ica_fname)
            assert_true(ica.exclude == ica_read.exclude)
            # test pick merge -- add components
            ica.pick_sources_raw(raw, exclude=[1])
            assert_true(ica.exclude == [0, 1])
            #                 -- only as arg
            ica.exclude = []
            ica.pick_sources_raw(raw, exclude=[0, 1])
            assert_true(ica.exclude == [0, 1])
            #                 -- remove duplicates
            ica.exclude += [1]
            ica.pick_sources_raw(raw, exclude=[0, 1])
            assert_true(ica.exclude == [0, 1])

            ica_raw = ica.sources_as_raw(raw)
            assert_true(ica.exclude == [ica.ch_names.index(e) for e in
                                        ica_raw.info['bads']])

        ica.n_pca_components = 2
        ica.save(test_ica_fname)
        ica_read = read_ica(test_ica_fname)
        assert_true(ica.n_pca_components ==
                    ica_read.n_pca_components)
        ica.n_pca_components = 4
        ica_read.n_pca_components = 4

        ica.exclude = []
        ica.save(test_ica_fname)
        ica_read = read_ica(test_ica_fname)

        assert_true(ica.ch_names == ica_read.ch_names)

        assert_true(np.allclose(ica.mixing_matrix_, ica_read.mixing_matrix_,
                                rtol=1e-16, atol=1e-32))
        assert_array_equal(ica.pca_components_,
                           ica_read.pca_components_)
        assert_array_equal(ica.pca_mean_, ica_read.pca_mean_)
        assert_array_equal(ica.pca_explained_variance_,
                           ica_read.pca_explained_variance_)
        assert_array_equal(ica._pre_whitener, ica_read._pre_whitener)

        # assert_raises(RuntimeError, ica_read.decompose_raw, raw)
        sources = ica.get_sources_raw(raw)
        sources2 = ica_read.get_sources_raw(raw)
        assert_array_almost_equal(sources, sources2)

        _raw1 = ica.pick_sources_raw(raw, exclude=[1])
        _raw2 = ica_read.pick_sources_raw(raw, exclude=[1])
        assert_array_almost_equal(_raw1[:, :][0], _raw2[:, :][0])

    os.remove(test_ica_fname)
    # score funcs raw, with catch since "ties preclude exact" warning
    # XXX this should be fixed by a future PR...
    with warnings.catch_warnings(True) as w:
        sfunc_test = [ica.find_sources_raw(raw, target='EOG 061',
                score_func=n, start=0, stop=10)
                for n, f in score_funcs.items()]
    # score funcs raw

    # check lenght of scores
    [assert_true(ica.n_components_ == len(scores)) for scores in sfunc_test]

    # check univariate stats
    scores = ica.find_sources_raw(raw, score_func=stats.skew)
    # check exception handling
    assert_raises(ValueError, ica.find_sources_raw, raw,
                  target=np.arange(1))

    ## score funcs epochs ##
#.........这里部分代码省略.........
开发者ID:mshamalainen,项目名称:mne-python,代码行数:103,代码来源:test_ica.py

示例13: compute_ica

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import save [as 别名]
def compute_ica(subject, data_folder):
    """Function will compute ICA on raw and apply the ICA.

    Parameters
    ----------
    subject : string
        the subject id to be loaded
    """
    raw = mne.io.Raw(data_folder + "%s_bp-raw.fif" % subject, preload=True)
    raw.set_montage = montage
    raw.apply_proj()
    # raw.resample(512, n_jobs=2)

    # ICA Part
    ica = ICA(n_components=None,
              max_pca_components=40,
              method='fastica',
              max_iter=256)

    picks = mne.pick_types(
        raw.info, meg=False, eeg=True, stim=False, exclude='bads')

    ica.fit(raw, picks=picks, decim=decim, reject=reject)

    # maximum number of components to reject
    n_max_eog = 1

    ##########################################################################
    # 2) identify bad components by analyzing latent sources.
    title = 'Sources related to %s artifacts (red) for sub: %s'
    #
    # # generate ECG epochs use detection via phase statistics
    # ecg_epochs = create_ecg_epochs(raw, ch_name="Ext4",
    #                                tmin=-.5, tmax=.5, picks=picks)
    # n_ecg_epochs_found = len(ecg_epochs.events)
    # sel_ecg_epochs = np.arange(0, n_ecg_epochs_found, 10)
    # ecg_epochs = ecg_epochs[sel_ecg_epochs]
    #
    # ecg_inds, scores = ica.find_bads_ecg(ecg_epochs, method='ctps')
    # fig = ica.plot_scores(scores, exclude=ecg_inds,
    #                       title=title % ('ecg', subject))
    # fig.savefig(data_folder + "pics/%s_ecg_scores.png" % subject)
    #
    # if ecg_inds:
    #     show_picks = np.abs(scores).argsort()[::-1][:5]
    #
    #     fig = ica.plot_sources(raw, show_picks, exclude=ecg_inds,
    #                            title=title % ('ecg', subject), show=False)
    #     fig.savefig(data_folder + "pics/%s_ecg_sources.png" % subject)
    #     fig = ica.plot_components(ecg_inds, title=title % ('ecg', subject),
    #                               colorbar=True)
    #     fig.savefig(data_folder + "pics/%s_ecg_component.png" % subject)
    #
    #     ecg_inds = ecg_inds[:n_max_ecg]
    #     ica.exclude += ecg_inds
    #
    # # estimate average artifact
    # ecg_evoked = ecg_epochs.average()
    # del ecg_epochs
    #
    # # plot ECG sources + selection
    # fig = ica.plot_sources(ecg_evoked, exclude=ecg_inds)
    # fig.savefig(data_folder + "pics/%s_ecg_sources_ave.png" % subject)
    #
    # # plot ECG cleaning
    # ica.plot_overlay(ecg_evoked, exclude=ecg_inds)
    # fig.savefig(data_folder + "pics/%s_ecg_sources_clean_ave.png" % subject)

    # DETECT EOG BY CORRELATION
    # HORIZONTAL EOG
    eog_epochs = create_eog_epochs(raw, ch_name="EXG4")
    eog_indices, scores = ica.find_bads_eog(raw, ch_name="EXG4")
    fig = ica.plot_scores(
        scores, exclude=eog_indices, title=title % ('eog', subject))
    fig.savefig(data_folder + "pics/%s_eog_scores.png" % subject)

    fig = ica.plot_components(
        eog_indices, title=title % ('eog', subject), colorbar=True)
    fig.savefig(data_folder + "pics/%s_eog_component.png" % subject)

    eog_indices = eog_indices[:n_max_eog]
    ica.exclude += eog_indices

    del eog_epochs

    ##########################################################################
    # Apply the solution to Raw, Epochs or Evoked like this:
    raw_ica = ica.apply(raw)
    ica.save(data_folder + "%s-ica.fif" % subject)  # save ICA componenets
    # Save raw with ICA removed
    raw_ica.save(data_folder + "%s_bp_ica-raw.fif" % subject, overwrite=True)
    plt.close("all")
开发者ID:MadsJensen,项目名称:agency_connectivity,代码行数:94,代码来源:preprocessing.py

示例14: compute_ica

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import save [as 别名]
def compute_ica(subject):
    """Function will compute ICA on raw and apply the ICA.

    params:
    subject : str
        the subject id to be loaded
    """
    raw = Raw(save_folder + "%s_filtered_data_mc_raw_tsss.fif" % subject,
              preload=True)

    # ICA Part
    ica = ICA(n_components=0.95, method='fastica', max_iter=256)

    picks = mne.pick_types(raw.info, meg=True, eeg=True,
                           stim=False, exclude='bads')

    ica.fit(raw, picks=picks, decim=decim, reject=reject)

    # maximum number of components to reject
    n_max_ecg, n_max_eog = 3, 1

    ##########################################################################
    # 2) identify bad components by analyzing latent sources.
    title = 'Sources related to %s artifacts (red) for sub: %s'

    # generate ECG epochs use detection via phase statistics
    ecg_epochs = create_ecg_epochs(raw, ch_name="ECG002",
                                   tmin=-.5, tmax=.5, picks=picks)
    n_ecg_epochs_found = len(ecg_epochs.events)
    sel_ecg_epochs = np.arange(0, n_ecg_epochs_found, 10)
    ecg_epochs = ecg_epochs[sel_ecg_epochs]

    ecg_inds, scores = ica.find_bads_ecg(ecg_epochs, method='ctps')
    fig = ica.plot_scores(scores, exclude=ecg_inds,
                          title=title % ('ecg', subject))
    fig.savefig(save_folder + "pics/%s_ecg_scores.png" % subject)

    if ecg_inds:
        show_picks = np.abs(scores).argsort()[::-1][:5]

        fig = ica.plot_sources(raw, show_picks, exclude=ecg_inds,
                               title=title % ('ecg', subject), show=False)
        fig.savefig(save_folder + "pics/%s_ecg_sources.png" % subject)
        fig = ica.plot_components(ecg_inds, title=title % ('ecg', subject),
                                  colorbar=True)
        fig.savefig(save_folder + "pics/%s_ecg_component.png" % subject)

        ecg_inds = ecg_inds[:n_max_ecg]
        ica.exclude += ecg_inds

    # estimate average artifact
    ecg_evoked = ecg_epochs.average()
    del ecg_epochs

    # plot ECG sources + selection
    fig = ica.plot_sources(ecg_evoked, exclude=ecg_inds)
    fig.savefig(save_folder + "pics/%s_ecg_sources_ave.png" % subject)

    # plot ECG cleaning
    ica.plot_overlay(ecg_evoked, exclude=ecg_inds)
    fig.savefig(save_folder + "pics/%s_ecg_sources_clean_ave.png" % subject)

    # DETECT EOG BY CORRELATION
    # HORIZONTAL EOG
    eog_epochs = create_eog_epochs(raw, ch_name="EOG001")
    eog_inds, scores = ica.find_bads_eog(raw)
    fig = ica.plot_scores(scores, exclude=eog_inds,
                          title=title % ('eog', subject))
    fig.savefig(save_folder + "pics/%s_eog_scores.png" % subject)

    fig = ica.plot_components(eog_inds, title=title % ('eog', subject),
                              colorbar=True)
    fig.savefig(save_folder + "pics/%s_eog_component.png" % subject)

    eog_inds = eog_inds[:n_max_eog]
    ica.exclude += eog_inds

    del eog_epochs

    ##########################################################################
    # Apply the solution to Raw, Epochs or Evoked like this:
    raw_ica = ica.apply(raw, copy=False)
    ica.save(save_folder + "%s-ica.fif" % subject)  # save ICA componenets
    # Save raw with ICA removed
    raw_ica.save(save_folder + "%s_filtered_ica_mc_raw_tsss.fif" % subject,
                 overwrite=True)
    plt.close("all")
开发者ID:MadsJensen,项目名称:malthe_alpha_project,代码行数:89,代码来源:filter_ICA.py

示例15: read_ica

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import save [as 别名]
fig = ica.plot_sources(heog_evoked, exclude=veog_inds)  # plot EOG sources + selection
fig.savefig(img_folder + '/ica_heog_evoked_sources_veog_inds.png')
fig = ica.plot_overlay(heog_evoked, exclude=veog_inds)  # plot EOG cleaning
fig.savefig(img_folder + '/ica_heog_evoked_overlay_veog_inds.png')
fig = ica.plot_sources(heog_evoked, exclude=heog_inds)  # plot EOG sources + selection
fig.savefig(img_folder + '/ica_heog_evoked_sources_heog_inds.png')
fig = ica.plot_overlay(heog_evoked, exclude=heog_inds)  # plot EOG cleaning
fig.savefig(img_folder + '/ica_heog_evoked_overlay_heog_inds.png')
fig = ica.plot_sources(heog_evoked, exclude=eog_inds)  # plot EOG sources + selection
fig.savefig(img_folder + '/ica_heog_evoked_sources_eog_inds.png')
fig = ica.plot_overlay(heog_evoked, exclude=eog_inds)  # plot EOG cleaning
fig.savefig(img_folder + '/ica_heog_evoked_overlay_eog_inds.png')

ica.exclude=tmp

# check the amplitudes do not change
fig = ica.plot_overlay(raw, start=611.5, stop=612.)  # 
fig.savefig(img_folder + '/ica_raw_overlay.png')

###############################################################################
# Save with information on excludes!
ica.save(raw_data_folder + '/ica_pre.fif')
#
# You can later load the solution by saying:
# >>> from mne.preprocessing import read_ica
# >>> read_ica('my_ica.fif')
#
# Apply the solution to Raw, Epochs or Evoked like this:
#ica.apply(raw, copy=False)
#raw.savefig(raw_data_folder + '/ec_rest_before_tsss_mc_rsl_ica.fif')
开发者ID:cjayb,项目名称:VSC-MEG-analysis,代码行数:32,代码来源:plot_ica_from_raw_example.py


注:本文中的mne.preprocessing.ICA.save方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。