当前位置: 首页>>代码示例>>Python>>正文


Python ICA.get_sources方法代码示例

本文整理汇总了Python中mne.preprocessing.ICA.get_sources方法的典型用法代码示例。如果您正苦于以下问题:Python ICA.get_sources方法的具体用法?Python ICA.get_sources怎么用?Python ICA.get_sources使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mne.preprocessing.ICA的用法示例。


在下文中一共展示了ICA.get_sources方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_ica_ctf

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import get_sources [as 别名]
def test_ica_ctf():
    """Test run ICA computation on ctf data with/without compensation."""
    method = 'fastica'
    raw = read_raw_ctf(ctf_fname, preload=True)
    events = make_fixed_length_events(raw, 99999)
    for comp in [0, 1]:
        raw.apply_gradient_compensation(comp)
        epochs = Epochs(raw, events, None, -0.2, 0.2, preload=True)
        evoked = epochs.average()

        # test fit
        for inst in [raw, epochs]:
            ica = ICA(n_components=2, random_state=0, max_iter=2,
                      method=method)
            with pytest.warns(UserWarning, match='did not converge'):
                ica.fit(inst)

        # test apply and get_sources
        for inst in [raw, epochs, evoked]:
            ica.apply(inst)
            ica.get_sources(inst)

    # test mixed compensation case
    raw.apply_gradient_compensation(0)
    ica = ICA(n_components=2, random_state=0, max_iter=2, method=method)
    with pytest.warns(UserWarning, match='did not converge'):
        ica.fit(raw)
    raw.apply_gradient_compensation(1)
    epochs = Epochs(raw, events, None, -0.2, 0.2, preload=True)
    evoked = epochs.average()
    for inst in [raw, epochs, evoked]:
        with pytest.raises(RuntimeError, match='Compensation grade of ICA'):
            ica.apply(inst)
        with pytest.raises(RuntimeError, match='Compensation grade of ICA'):
            ica.get_sources(inst)
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:37,代码来源:test_ica.py

示例2: test_ica_eeg

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import get_sources [as 别名]
def test_ica_eeg():
    """Test ICA on EEG."""
    method = 'fastica'
    raw_fif = read_raw_fif(fif_fname, preload=True)
    with pytest.warns(RuntimeWarning, match='events'):
        raw_eeglab = read_raw_eeglab(input_fname=eeglab_fname,
                                     montage=eeglab_montage, preload=True)
    for raw in [raw_fif, raw_eeglab]:
        events = make_fixed_length_events(raw, 99999, start=0, stop=0.3,
                                          duration=0.1)
        picks_meg = pick_types(raw.info, meg=True, eeg=False)[:2]
        picks_eeg = pick_types(raw.info, meg=False, eeg=True)[:2]
        picks_all = []
        picks_all.extend(picks_meg)
        picks_all.extend(picks_eeg)
        epochs = Epochs(raw, events, None, -0.1, 0.1, preload=True)
        evoked = epochs.average()

        for picks in [picks_meg, picks_eeg, picks_all]:
            if len(picks) == 0:
                continue
            # test fit
            for inst in [raw, epochs]:
                ica = ICA(n_components=2, random_state=0, max_iter=2,
                          method=method)
                with pytest.warns(None):
                    ica.fit(inst, picks=picks)

            # test apply and get_sources
            for inst in [raw, epochs, evoked]:
                ica.apply(inst)
                ica.get_sources(inst)

    with pytest.warns(RuntimeWarning, match='MISC channel'):
        raw = read_raw_ctf(ctf_fname2,  preload=True)
    events = make_fixed_length_events(raw, 99999, start=0, stop=0.2,
                                      duration=0.1)
    picks_meg = pick_types(raw.info, meg=True, eeg=False)[:2]
    picks_eeg = pick_types(raw.info, meg=False, eeg=True)[:2]
    picks_all = picks_meg + picks_eeg
    for comp in [0, 1]:
        raw.apply_gradient_compensation(comp)
        epochs = Epochs(raw, events, None, -0.1, 0.1, preload=True)
        evoked = epochs.average()

        for picks in [picks_meg, picks_eeg, picks_all]:
            if len(picks) == 0:
                continue
            # test fit
            for inst in [raw, epochs]:
                ica = ICA(n_components=2, random_state=0, max_iter=2,
                          method=method)
                with pytest.warns(None):
                    ica.fit(inst)

            # test apply and get_sources
            for inst in [raw, epochs, evoked]:
                ica.apply(inst)
                ica.get_sources(inst)
开发者ID:SherazKhan,项目名称:mne-python,代码行数:61,代码来源:test_ica.py

示例3: test_ica_labels

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import get_sources [as 别名]
def test_ica_labels():
    """Test ICA labels."""
    # The CTF data are uniquely well suited to testing the ICA.find_bads_
    # methods
    raw = read_raw_ctf(ctf_fname, preload=True)
    # derive reference ICA components and append them to raw
    icarf = ICA(n_components=2, random_state=0, max_iter=2, allow_ref_meg=True)
    with pytest.warns(UserWarning, match='did not converge'):
        icarf.fit(raw.copy().pick_types(meg=False, ref_meg=True))
    icacomps = icarf.get_sources(raw)
    # rename components so they are auto-detected by find_bads_ref
    icacomps.rename_channels({c: 'REF_' + c for c in icacomps.ch_names})
    # and add them to raw
    raw.add_channels([icacomps])
    # set the appropriate EEG channels to EOG and ECG
    raw.set_channel_types({'EEG057': 'eog', 'EEG058': 'eog', 'EEG059': 'ecg'})
    ica = ICA(n_components=4, random_state=0, max_iter=2, method='fastica')
    with pytest.warns(UserWarning, match='did not converge'):
        ica.fit(raw)

    ica.find_bads_eog(raw, l_freq=None, h_freq=None)
    picks = list(pick_types(raw.info, meg=False, eog=True))
    for idx, ch in enumerate(picks):
        assert '{}/{}/{}'.format('eog', idx, raw.ch_names[ch]) in ica.labels_
    assert 'eog' in ica.labels_
    for key in ('ecg', 'ref_meg', 'ecg/ECG-MAG'):
        assert key not in ica.labels_

    ica.find_bads_ecg(raw, l_freq=None, h_freq=None, method='correlation')
    picks = list(pick_types(raw.info, meg=False, ecg=True))
    for idx, ch in enumerate(picks):
        assert '{}/{}/{}'.format('ecg', idx, raw.ch_names[ch]) in ica.labels_
    for key in ('ecg', 'eog'):
        assert key in ica.labels_
    for key in ('ref_meg', 'ecg/ECG-MAG'):
        assert key not in ica.labels_

    ica.find_bads_ref(raw, l_freq=None, h_freq=None)
    picks = pick_channels_regexp(raw.ch_names, 'REF_ICA*')
    for idx, ch in enumerate(picks):
        assert '{}/{}/{}'.format('ref_meg', idx,
                                 raw.ch_names[ch]) in ica.labels_
    for key in ('ecg', 'eog', 'ref_meg'):
        assert key in ica.labels_
    assert 'ecg/ECG-MAG' not in ica.labels_

    ica.find_bads_ecg(raw, l_freq=None, h_freq=None)
    for key in ('ecg', 'eog', 'ref_meg', 'ecg/ECG-MAG'):
        assert key in ica.labels_
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:51,代码来源:test_ica.py

示例4: test_ica_additional

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import get_sources [as 别名]
def test_ica_additional():
    """Test additional ICA functionality"""
    tempdir = _TempDir()
    stop2 = 500
    raw = Raw(raw_fname).crop(1.5, stop, False)
    raw.load_data()
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')
    test_cov = read_cov(test_cov_name)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')
    epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), preload=True)
    # test if n_components=None works
    with warnings.catch_warnings(record=True):
        ica = ICA(n_components=None,
                  max_pca_components=None,
                  n_pca_components=None, random_state=0)
        ica.fit(epochs, picks=picks, decim=3)
    # for testing eog functionality
    picks2 = pick_types(raw.info, meg=True, stim=False, ecg=False,
                        eog=True, exclude='bads')
    epochs_eog = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks2,
                        baseline=(None, 0), preload=True)

    test_cov2 = test_cov.copy()
    ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4,
              n_pca_components=4)
    assert_true(ica.info is None)
    with warnings.catch_warnings(record=True):
        ica.fit(raw, picks[:5])
    assert_true(isinstance(ica.info, Info))
    assert_true(ica.n_components_ < 5)

    ica = ICA(n_components=3, max_pca_components=4,
              n_pca_components=4)
    assert_raises(RuntimeError, ica.save, '')
    with warnings.catch_warnings(record=True):
        ica.fit(raw, picks=[1, 2, 3, 4, 5], start=start, stop=stop2)

    # test corrmap
    ica2 = ica.copy()
    corrmap([ica, ica2], (0, 0), threshold='auto', label='blinks', plot=True,
            ch_type="mag")
    corrmap([ica, ica2], (0, 0), threshold=2, plot=False, show=False)
    assert_true(ica.labels_["blinks"] == ica2.labels_["blinks"])
    assert_true(0 in ica.labels_["blinks"])
    plt.close('all')

    # test warnings on bad filenames
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        ica_badname = op.join(op.dirname(tempdir), 'test-bad-name.fif.gz')
        ica.save(ica_badname)
        read_ica(ica_badname)
    assert_naming(w, 'test_ica.py', 2)

    # test decim
    ica = ICA(n_components=3, max_pca_components=4,
              n_pca_components=4)
    raw_ = raw.copy()
    for _ in range(3):
        raw_.append(raw_)
    n_samples = raw_._data.shape[1]
    with warnings.catch_warnings(record=True):
        ica.fit(raw, picks=None, decim=3)
    assert_true(raw_._data.shape[1], n_samples)

    # test expl var
    ica = ICA(n_components=1.0, max_pca_components=4,
              n_pca_components=4)
    with warnings.catch_warnings(record=True):
        ica.fit(raw, picks=None, decim=3)
    assert_true(ica.n_components_ == 4)

    # epochs extraction from raw fit
    assert_raises(RuntimeError, ica.get_sources, epochs)
    # test reading and writing
    test_ica_fname = op.join(op.dirname(tempdir), 'test-ica.fif')
    for cov in (None, test_cov):
        ica = ICA(noise_cov=cov, n_components=2, max_pca_components=4,
                  n_pca_components=4)
        with warnings.catch_warnings(record=True):  # ICA does not converge
            ica.fit(raw, picks=picks, start=start, stop=stop2)
        sources = ica.get_sources(epochs).get_data()
        assert_true(ica.mixing_matrix_.shape == (2, 2))
        assert_true(ica.unmixing_matrix_.shape == (2, 2))
        assert_true(ica.pca_components_.shape == (4, len(picks)))
        assert_true(sources.shape[1] == ica.n_components_)

        for exclude in [[], [0]]:
            ica.exclude = [0]
            ica.labels_ = {'foo': [0]}
            ica.save(test_ica_fname)
            ica_read = read_ica(test_ica_fname)
            assert_true(ica.exclude == ica_read.exclude)
            assert_equal(ica.labels_, ica_read.labels_)
            ica.exclude = []
            ica.apply(raw, exclude=[1])
#.........这里部分代码省略.........
开发者ID:mdclarke,项目名称:mne-python,代码行数:103,代码来源:test_ica.py

示例5: test_ica_core

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import get_sources [as 别名]
def test_ica_core():
    """Test ICA on raw and epochs"""
    raw = Raw(raw_fname).crop(1.5, stop, False)
    raw.load_data()
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')
    # XXX. The None cases helped revealing bugs but are time consuming.
    test_cov = read_cov(test_cov_name)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')
    epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), preload=True)
    noise_cov = [None, test_cov]
    # removed None cases to speed up...
    n_components = [2, 1.0]  # for future dbg add cases
    max_pca_components = [3]
    picks_ = [picks]
    methods = ['fastica']
    iter_ica_params = product(noise_cov, n_components, max_pca_components,
                              picks_, methods)

    # # test init catchers
    assert_raises(ValueError, ICA, n_components=3, max_pca_components=2)
    assert_raises(ValueError, ICA, n_components=2.3, max_pca_components=2)

    # test essential core functionality
    for n_cov, n_comp, max_n, pcks, method in iter_ica_params:
        # Test ICA raw
        ica = ICA(noise_cov=n_cov, n_components=n_comp,
                  max_pca_components=max_n, n_pca_components=max_n,
                  random_state=0, method=method, max_iter=1)
        assert_raises(ValueError, ica.__contains__, 'mag')

        print(ica)  # to test repr

        # test fit checker
        assert_raises(RuntimeError, ica.get_sources, raw)
        assert_raises(RuntimeError, ica.get_sources, epochs)

        # test decomposition
        with warnings.catch_warnings(record=True):
            ica.fit(raw, picks=pcks, start=start, stop=stop)
            repr(ica)  # to test repr
        assert_true('mag' in ica)  # should now work without error

        # test re-fit
        unmixing1 = ica.unmixing_matrix_
        with warnings.catch_warnings(record=True):
            ica.fit(raw, picks=pcks, start=start, stop=stop)
        assert_array_almost_equal(unmixing1, ica.unmixing_matrix_)

        sources = ica.get_sources(raw)[:, :][0]
        assert_true(sources.shape[0] == ica.n_components_)

        # test preload filter
        raw3 = raw.copy()
        raw3.preload = False
        assert_raises(ValueError, ica.apply, raw3,
                      include=[1, 2])

        #######################################################################
        # test epochs decomposition
        ica = ICA(noise_cov=n_cov, n_components=n_comp,
                  max_pca_components=max_n, n_pca_components=max_n,
                  random_state=0)
        with warnings.catch_warnings(record=True):
            ica.fit(epochs, picks=picks)
        data = epochs.get_data()[:, 0, :]
        n_samples = np.prod(data.shape)
        assert_equal(ica.n_samples_, n_samples)
        print(ica)  # to test repr

        sources = ica.get_sources(epochs).get_data()
        assert_true(sources.shape[1] == ica.n_components_)

        assert_raises(ValueError, ica.score_sources, epochs,
                      target=np.arange(1))

        # test preload filter
        epochs3 = epochs.copy()
        epochs3.preload = False
        assert_raises(ValueError, ica.apply, epochs3,
                      include=[1, 2])

    # test for bug with whitener updating
    _pre_whitener = ica._pre_whitener.copy()
    epochs._data[:, 0, 10:15] *= 1e12
    ica.apply(epochs, copy=True)
    assert_array_equal(_pre_whitener, ica._pre_whitener)

    # test expl. var threshold leading to empty sel
    ica.n_components = 0.1
    assert_raises(RuntimeError, ica.fit, epochs)

    offender = 1, 2, 3,
    assert_raises(ValueError, ica.get_sources, offender)
    assert_raises(ValueError, ica.fit, offender)
    assert_raises(ValueError, ica.apply, offender)
开发者ID:mdclarke,项目名称:mne-python,代码行数:101,代码来源:test_ica.py

示例6: test_ica_additional

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import get_sources [as 别名]

#.........这里部分代码省略.........
    with pytest.warns(RuntimeWarning, match='-ica.fif'):
        ica.save(ica_badname)
    with pytest.warns(RuntimeWarning, match='-ica.fif'):
        read_ica(ica_badname)

    # test decim
    ica = ICA(n_components=3, max_pca_components=4,
              n_pca_components=4, method=method, max_iter=1)
    raw_ = raw.copy()
    for _ in range(3):
        raw_.append(raw_)
    n_samples = raw_._data.shape[1]
    with pytest.warns(UserWarning, match='did not converge'):
        ica.fit(raw, picks=picks[:5], decim=3)
    assert raw_._data.shape[1] == n_samples

    # test expl var
    ica = ICA(n_components=1.0, max_pca_components=4,
              n_pca_components=4, method=method, max_iter=1)
    with pytest.warns(UserWarning, match='did not converge'):
        ica.fit(raw, picks=None, decim=3)
    assert (ica.n_components_ == 4)
    ica_var = _ica_explained_variance(ica, raw, normalize=True)
    assert (np.all(ica_var[:-1] >= ica_var[1:]))

    # test ica sorting
    ica.exclude = [0]
    ica.labels_ = dict(blink=[0], think=[1])
    ica_sorted = _sort_components(ica, [3, 2, 1, 0], copy=True)
    assert_equal(ica_sorted.exclude, [3])
    assert_equal(ica_sorted.labels_, dict(blink=[3], think=[2]))

    # epochs extraction from raw fit
    pytest.raises(RuntimeError, ica.get_sources, epochs)
    # test reading and writing
    test_ica_fname = op.join(op.dirname(tempdir), 'test-ica.fif')
    for cov in (None, test_cov):
        ica = ICA(noise_cov=cov, n_components=2, max_pca_components=4,
                  n_pca_components=4, method=method, max_iter=1)
        with pytest.warns(None):  # ICA does not converge
            ica.fit(raw, picks=picks[:10], start=start, stop=stop2)
        sources = ica.get_sources(epochs).get_data()
        assert (ica.mixing_matrix_.shape == (2, 2))
        assert (ica.unmixing_matrix_.shape == (2, 2))
        assert (ica.pca_components_.shape == (4, 10))
        assert (sources.shape[1] == ica.n_components_)

        for exclude in [[], [0], np.array([1, 2, 3])]:
            ica.exclude = exclude
            ica.labels_ = {'foo': [0]}
            ica.save(test_ica_fname)
            ica_read = read_ica(test_ica_fname)
            assert (list(ica.exclude) == ica_read.exclude)
            assert_equal(ica.labels_, ica_read.labels_)
            ica.apply(raw)
            ica.exclude = []
            ica.apply(raw, exclude=[1])
            assert (ica.exclude == [])

            ica.exclude = [0, 1]
            ica.apply(raw, exclude=[1])
            assert (ica.exclude == [0, 1])

            ica_raw = ica.get_sources(raw)
            assert (ica.exclude == [ica_raw.ch_names.index(e) for e in
                                    ica_raw.info['bads']])
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:70,代码来源:test_ica.py

示例7: used

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import get_sources [as 别名]
                         exclude=exclude)
# 2. Band-pass filter 4-45 Hertz
    raw.filter(4,45)
    print ">> finding events"
    # extract events from data
    events = mne.find_events(raw, stim_channel='STI 014')
    # extract epoch from events
    # event no.3 used (fixation screen before trial begin), information can be read at DEAP web
    event_id = 3
    tmin = 0
    tmax = 65
    baseline = (0, 5) # 5 seecond baseline, before the trial begin
    print ">> finding epochs"
# 3. Getting EPOCHS from data, using status code (event id) no.3
#    and downsampling the data into 128 hertz (decim=4)
    epochs = mne.Epochs(raw,events, event_id, tmin, tmax, picks=var_picks,baseline= baseline,
                        add_eeg_ref= True,decim=4,preload=True)

# 4. ICA
    ica=ICA(n_components=32)
    ica=ica.fit(epochs,picks=var_picks)
    # getting data as list
    datas=ica.get_sources(epochs)
    datas=datas.get_data()
# 5. saving data as pickle
    pickle.dump(datas,open("newBasedDEAP_"+str(i)+".p","wb"))




开发者ID:syahdeini,项目名称:EEG_emotion_clasification,代码行数:28,代码来源:process_1st.py

示例8: test_ica_core

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import get_sources [as 别名]
def test_ica_core(method):
    """Test ICA on raw and epochs."""
    _skip_check_picard(method)
    raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data()

    # XXX. The None cases helped revealing bugs but are time consuming.
    test_cov = read_cov(test_cov_name)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')
    epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), preload=True)
    noise_cov = [None, test_cov]
    # removed None cases to speed up...
    n_components = [2, 1.0]  # for future dbg add cases
    max_pca_components = [3]
    picks_ = [picks]
    methods = [method]
    iter_ica_params = product(noise_cov, n_components, max_pca_components,
                              picks_, methods)

    # # test init catchers
    pytest.raises(ValueError, ICA, n_components=3, max_pca_components=2)
    pytest.raises(ValueError, ICA, n_components=2.3, max_pca_components=2)

    # test essential core functionality
    for n_cov, n_comp, max_n, pcks, method in iter_ica_params:
        # Test ICA raw
        ica = ICA(noise_cov=n_cov, n_components=n_comp,
                  max_pca_components=max_n, n_pca_components=max_n,
                  random_state=0, method=method, max_iter=1)
        pytest.raises(ValueError, ica.__contains__, 'mag')

        print(ica)  # to test repr

        # test fit checker
        pytest.raises(RuntimeError, ica.get_sources, raw)
        pytest.raises(RuntimeError, ica.get_sources, epochs)

        # test decomposition
        with pytest.warns(UserWarning, match='did not converge'):
            ica.fit(raw, picks=pcks, start=start, stop=stop)
        repr(ica)  # to test repr
        assert ('mag' in ica)  # should now work without error

        # test re-fit
        unmixing1 = ica.unmixing_matrix_
        with pytest.warns(UserWarning, match='did not converge'):
            ica.fit(raw, picks=pcks, start=start, stop=stop)
        assert_array_almost_equal(unmixing1, ica.unmixing_matrix_)

        raw_sources = ica.get_sources(raw)
        # test for #3804
        assert_equal(raw_sources._filenames, [None])
        print(raw_sources)

        # test for gh-6271 (scaling of ICA traces)
        fig = raw_sources.plot()
        assert len(fig.axes[0].lines) in (4, 5)
        for line in fig.axes[0].lines[1:-1]:  # first and last are markers
            y = line.get_ydata()
            assert np.ptp(y) < 10
        plt.close('all')

        sources = raw_sources[:, :][0]
        assert (sources.shape[0] == ica.n_components_)

        # test preload filter
        raw3 = raw.copy()
        raw3.preload = False
        pytest.raises(RuntimeError, ica.apply, raw3,
                      include=[1, 2])

        #######################################################################
        # test epochs decomposition
        ica = ICA(noise_cov=n_cov, n_components=n_comp,
                  max_pca_components=max_n, n_pca_components=max_n,
                  random_state=0, method=method)
        with pytest.warns(None):  # sometimes warns
            ica.fit(epochs, picks=picks)
        data = epochs.get_data()[:, 0, :]
        n_samples = np.prod(data.shape)
        assert_equal(ica.n_samples_, n_samples)
        print(ica)  # to test repr

        sources = ica.get_sources(epochs).get_data()
        assert (sources.shape[1] == ica.n_components_)

        pytest.raises(ValueError, ica.score_sources, epochs,
                      target=np.arange(1))

        # test preload filter
        epochs3 = epochs.copy()
        epochs3.preload = False
        pytest.raises(RuntimeError, ica.apply, epochs3,
                      include=[1, 2])

    # test for bug with whitener updating
    _pre_whitener = ica.pre_whitener_.copy()
    epochs._data[:, 0, 10:15] *= 1e12
#.........这里部分代码省略.........
开发者ID:adykstra,项目名称:mne-python,代码行数:103,代码来源:test_ica.py

示例9: test_ica_additional

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import get_sources [as 别名]
def test_ica_additional():
    """Test additional ICA functionality"""
    stop2 = 500
    raw = io.Raw(raw_fname, preload=True).crop(0, stop, False).crop(1.5)
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude="bads")
    test_cov = read_cov(test_cov_name)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude="bads")
    epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True)
    # for testing eog functionality
    picks2 = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=True, exclude="bads")
    epochs_eog = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks2, baseline=(None, 0), preload=True)

    test_cov2 = deepcopy(test_cov)
    ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4, n_pca_components=4)
    assert_true(ica.info is None)
    with warnings.catch_warnings(record=True):
        ica.fit(raw, picks[:5])
    assert_true(isinstance(ica.info, Info))
    assert_true(ica.n_components_ < 5)

    ica = ICA(n_components=3, max_pca_components=4, n_pca_components=4)
    assert_raises(RuntimeError, ica.save, "")
    with warnings.catch_warnings(record=True):
        ica.fit(raw, picks=None, start=start, stop=stop2)

    # test warnings on bad filenames
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always")
        ica_badname = op.join(op.dirname(tempdir), "test-bad-name.fif.gz")
        ica.save(ica_badname)
        read_ica(ica_badname)
    assert_true(len(w) == 2)

    # test decim
    ica = ICA(n_components=3, max_pca_components=4, n_pca_components=4)
    raw_ = raw.copy()
    for _ in range(3):
        raw_.append(raw_)
    n_samples = raw_._data.shape[1]
    with warnings.catch_warnings(record=True):
        ica.fit(raw, picks=None, decim=3)
    assert_true(raw_._data.shape[1], n_samples)

    # test expl var
    ica = ICA(n_components=1.0, max_pca_components=4, n_pca_components=4)
    with warnings.catch_warnings(record=True):
        ica.fit(raw, picks=None, decim=3)
    assert_true(ica.n_components_ == 4)

    # epochs extraction from raw fit
    assert_raises(RuntimeError, ica.get_sources, epochs)
    # test reading and writing
    test_ica_fname = op.join(op.dirname(tempdir), "test-ica.fif")
    for cov in (None, test_cov):
        ica = ICA(noise_cov=cov, n_components=2, max_pca_components=4, n_pca_components=4)
        with warnings.catch_warnings(record=True):  # ICA does not converge
            ica.fit(raw, picks=picks, start=start, stop=stop2)
        sources = ica.get_sources(epochs).get_data()
        assert_true(ica.mixing_matrix_.shape == (2, 2))
        assert_true(ica.unmixing_matrix_.shape == (2, 2))
        assert_true(ica.pca_components_.shape == (4, len(picks)))
        assert_true(sources.shape[1] == ica.n_components_)

        for exclude in [[], [0]]:
            ica.exclude = [0]
            ica.save(test_ica_fname)
            ica_read = read_ica(test_ica_fname)
            assert_true(ica.exclude == ica_read.exclude)

            ica.exclude = []
            ica.apply(raw, exclude=[1])
            assert_true(ica.exclude == [])

            ica.exclude = [0, 1]
            ica.apply(raw, exclude=[1])
            assert_true(ica.exclude == [0, 1])

            ica_raw = ica.get_sources(raw)
            assert_true(ica.exclude == [ica_raw.ch_names.index(e) for e in ica_raw.info["bads"]])

        # test filtering
        d1 = ica_raw._data[0].copy()
        with warnings.catch_warnings(record=True):  # dB warning
            ica_raw.filter(4, 20)
        assert_true((d1 != ica_raw._data[0]).any())
        d1 = ica_raw._data[0].copy()
        with warnings.catch_warnings(record=True):  # dB warning
            ica_raw.notch_filter([10])
        assert_true((d1 != ica_raw._data[0]).any())

        ica.n_pca_components = 2
        ica.save(test_ica_fname)
        ica_read = read_ica(test_ica_fname)
        assert_true(ica.n_pca_components == ica_read.n_pca_components)

        # check type consistency
        attrs = "mixing_matrix_ unmixing_matrix_ pca_components_ " "pca_explained_variance_ _pre_whitener"
        f = lambda x, y: getattr(x, y).dtype
        for attr in attrs.split():
#.........这里部分代码省略.........
开发者ID:rgoj,项目名称:mne-python,代码行数:103,代码来源:test_ica.py

示例10: preprocess_ICA_fif_to_ts

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import get_sources [as 别名]
def preprocess_ICA_fif_to_ts(fif_file, ECG_ch_name, EoG_ch_name, l_freq, h_freq):
    # ------------------------ Import stuff ------------------------ #
    import os
    import mne
    import sys
    from mne.io import Raw
    from mne.preprocessing import ICA
    from mne.preprocessing import create_ecg_epochs, create_eog_epochs
    from nipype.utils.filemanip import split_filename as split_f
    from reportGen import generateReport
    import pickle

    subj_path, basename, ext = split_f(fif_file)
    # -------------------- Delete later ------------------- #
    subj_name = subj_path[-5:]
    results_dir = subj_path[:-6]
    # results_dir += '2016'
    subj_path = results_dir + '/' + subj_name
    if not os.path.exists(subj_path):
        try:
            os.makedirs(subj_path)
        except OSError:
            sys.stderr.write('ica_preproc: problem creating directory: ' + subj_path)
    ########################################################
    # Read raw
    #   If None the compensation in the data is not modified. If set to n, e.g. 3, apply
    #   gradient compensation of grade n as for CTF systems (compensation=3)
    print(fif_file)
    print(EoG_ch_name)
    #  ----------------------------- end Import stuff ----------------- #
    # EoG_ch_name = "EOG061, EOG062"

    # ------------- Load raw ------------- #
    raw = Raw(fif_file, preload=True)
    # select sensors
    select_sensors = mne.pick_types(raw.info, meg=True, ref_meg=False, exclude='bads')
    picks_meeg = mne.pick_types(raw.info, meg=True, eeg=True, exclude='bads')

    # filtering
    raw.filter(l_freq=l_freq, h_freq=h_freq, picks=picks_meeg, method='iir', n_jobs=1)

    # if ECG_ch_name == 'EMG063':
    if ECG_ch_name in raw.info['ch_names']:
        raw.set_channel_types({ECG_ch_name: 'ecg'})  # Without this files with ECG_ch_name = 'EMG063' fail
        # ECG_ch_name = 'ECG063'
    if EoG_ch_name == 'EMG065,EMG066,EMG067,EMG068':   # Because ica.find_bads_eog... can process max 2 EoG channels
        EoG_ch_name = 'EMG065,EMG067'                 # it won't fail if I specify 4 channels, but it'll use only first
                                                      # EMG065 and EMG066 are for vertical eye movements and
                                                      # EMG067 and EMG068 are for horizontal

    # print rnk
    rnk = 'N/A'
    # 1) Fit ICA model using the FastICA algorithm
    # Other available choices are `infomax` or `extended-infomax`
    # We pass a float value between 0 and 1 to select n_components based on the
    # percentage of variance explained by the PCA components.
    reject = dict(mag=10e-12, grad=10000e-13)
    flat = dict(mag=0.1e-12, grad=1e-13)
    # check if we have an ICA, if yes, we load it
    ica_filename = os.path.join(subj_path, basename + "-ica.fif")
    raw_ica_filename = os.path.join(subj_path, basename + "_ica_raw.fif")
    info_filename = os.path.join(subj_path, basename + "_info.pickle")
    # if os.path.exists(ica_filename) == False:
    ica = ICA(n_components=0.99, method='fastica')  # , max_iter=500
    ica.fit(raw, picks=select_sensors, reject=reject, flat=flat)  # decim = 3,
    # has_ICA = False
    # else:
    #     has_ICA = True
    #     ica = read_ica(ica_filename)
    #     ica.exclude = []
    # ica.labels_ = dict() # to avoid bug; Otherwise it'll throw an exception

    ica_sources_filename = subj_path + '/' + basename + '_ica_timecourse.fif'

    # if not os.path.isfile(ica_sources_filename):
    icaSrc = ica.get_sources(raw, add_channels=None, start=None, stop=None)
    icaSrc.save(ica_sources_filename, picks=None, tmin=0, tmax=None, buffer_size_sec=10,
                drop_small_buffer=False, proj=False, fmt='single', overwrite=True, split_size='2GB', verbose=None)
    icaSrc = None
    # if has_ICA == False:
    # ica.save(ica_filename)
    # return
    # 2) identify bad components by analyzing latent sources.
    # generate ECG epochs use detection via phase statistics

    # check if ECG_ch_name is in the raw channels
    # import ipdb; ipdb.set_trace()
    if ECG_ch_name in raw.info['ch_names']:
        ecg_epochs = create_ecg_epochs(raw, tmin=-.5, tmax=.5, picks=select_sensors, ch_name=ECG_ch_name)
    # if not  a synthetic ECG channel is created from cross channel average
    else:
        ecg_epochs = create_ecg_epochs(raw, tmin=-.5, tmax=.5, picks=select_sensors)
    # ICA for ECG artifact
    # threshold=0.25 come defualt
    ecg_inds, ecg_scores = ica.find_bads_ecg(ecg_epochs, method='ctps', threshold=0.25)
    # if len(ecg_inds) > 0:
    ecg_evoked = ecg_epochs.average()
    ecg_epochs = None    # ecg_epochs use too much memory
    n_max_ecg = 3
    ecg_inds = ecg_inds[:n_max_ecg]
#.........这里部分代码省略.........
开发者ID:dmalt,项目名称:ICA_clean_pipeline,代码行数:103,代码来源:ica_preproc.py


注:本文中的mne.preprocessing.ICA.get_sources方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。