当前位置: 首页>>代码示例>>Python>>正文


Python ICA.plot_overlay方法代码示例

本文整理汇总了Python中mne.preprocessing.ICA.plot_overlay方法的典型用法代码示例。如果您正苦于以下问题:Python ICA.plot_overlay方法的具体用法?Python ICA.plot_overlay怎么用?Python ICA.plot_overlay使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mne.preprocessing.ICA的用法示例。


在下文中一共展示了ICA.plot_overlay方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_plot_ica_overlay

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import plot_overlay [as 别名]
def test_plot_ica_overlay():
    """Test plotting of ICA cleaning."""
    import matplotlib.pyplot as plt
    raw = _get_raw(preload=True)
    picks = _get_picks(raw)
    ica = ICA(noise_cov=read_cov(cov_fname), n_components=2,
              max_pca_components=3, n_pca_components=3)
    # can't use info.normalize_proj here because of how and when ICA and Epochs
    # objects do picking of Raw data
    with pytest.warns(RuntimeWarning, match='projection'):
        ica.fit(raw, picks=picks)
    # don't test raw, needs preload ...
    with pytest.warns(RuntimeWarning, match='projection'):
        ecg_epochs = create_ecg_epochs(raw, picks=picks)
    ica.plot_overlay(ecg_epochs.average())
    with pytest.warns(RuntimeWarning, match='projection'):
        eog_epochs = create_eog_epochs(raw, picks=picks)
    ica.plot_overlay(eog_epochs.average())
    pytest.raises(TypeError, ica.plot_overlay, raw[:2, :3][0])
    ica.plot_overlay(raw)
    plt.close('all')

    # smoke test for CTF
    raw = read_raw_fif(raw_ctf_fname)
    raw.apply_gradient_compensation(3)
    picks = pick_types(raw.info, meg=True, ref_meg=False)
    ica = ICA(n_components=2, max_pca_components=3, n_pca_components=3)
    ica.fit(raw, picks=picks)
    with pytest.warns(RuntimeWarning, match='longer than'):
        ecg_epochs = create_ecg_epochs(raw)
    ica.plot_overlay(ecg_epochs.average())
    plt.close('all')
开发者ID:SherazKhan,项目名称:mne-python,代码行数:34,代码来源:test_ica.py

示例2: test_plot_ica_overlay

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import plot_overlay [as 别名]
def test_plot_ica_overlay():
    """Test plotting of ICA cleaning
    """
    raw = _get_raw()
    picks = _get_picks(raw)
    ica = ICA(noise_cov=read_cov(cov_fname), n_components=2,
              max_pca_components=3, n_pca_components=3)
    ica.fit(raw, picks=picks)
    # don't test raw, needs preload ...
    ecg_epochs = create_ecg_epochs(raw, picks=picks)
    ica.plot_overlay(ecg_epochs.average())
    eog_epochs = create_eog_epochs(raw, picks=picks)
    ica.plot_overlay(eog_epochs.average())
    assert_raises(ValueError, ica.plot_overlay, raw[:2, :3][0])
    plt.close('all')
开发者ID:dengemann,项目名称:mne-python,代码行数:17,代码来源:test_ica.py

示例3: test_plot_ica_overlay

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import plot_overlay [as 别名]
def test_plot_ica_overlay():
    """Test plotting of ICA cleaning
    """
    raw = _get_raw()
    picks = _get_picks(raw)
    ica_picks = pick_types(raw.info, meg=True, eeg=False, stim=False, ecg=False, eog=False, exclude="bads")
    ica = ICA(noise_cov=read_cov(cov_fname), n_components=2, max_pca_components=3, n_pca_components=3)
    ica.fit(raw, picks=ica_picks)
    # don't test raw, needs preload ...
    ecg_epochs = create_ecg_epochs(raw, picks=picks)
    ica.plot_overlay(ecg_epochs.average())
    eog_epochs = create_eog_epochs(raw, picks=picks)
    ica.plot_overlay(eog_epochs.average())
    assert_raises(ValueError, ica.plot_overlay, raw[:2, :3][0])
    plt.close("all")
开发者ID:rgoj,项目名称:mne-python,代码行数:17,代码来源:test_viz.py

示例4: test_plot_ica_overlay

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import plot_overlay [as 别名]
def test_plot_ica_overlay():
    """Test plotting of ICA cleaning."""
    import matplotlib.pyplot as plt
    raw = _get_raw(preload=True)
    picks = _get_picks(raw)
    ica = ICA(noise_cov=read_cov(cov_fname), n_components=2,
              max_pca_components=3, n_pca_components=3)
    # can't use info.normalize_proj here because of how and when ICA and Epochs
    # objects do picking of Raw data
    with warnings.catch_warnings(record=True):  # bad proj
        ica.fit(raw, picks=picks)
    # don't test raw, needs preload ...
    with warnings.catch_warnings(record=True):  # bad proj
        ecg_epochs = create_ecg_epochs(raw, picks=picks)
    ica.plot_overlay(ecg_epochs.average())
    with warnings.catch_warnings(record=True):  # bad proj
        eog_epochs = create_eog_epochs(raw, picks=picks)
    ica.plot_overlay(eog_epochs.average())
    assert_raises(ValueError, ica.plot_overlay, raw[:2, :3][0])
    ica.plot_overlay(raw)
    plt.close('all')
开发者ID:jmontoyam,项目名称:mne-python,代码行数:23,代码来源:test_ica.py

示例5: dict

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import plot_overlay [as 别名]
baseline = None  # no baseline as high-pass is applied
reject = dict(mag=5e-12)

epochs = mne.Epochs(raw, events, event_ids, tmin, tmax,  picks=picks,
                    baseline=baseline, preload=True, reject=reject)

# Fit ICA, find and remove major artifacts
ica = ICA(n_components=0.95, random_state=0).fit(raw, decim=1, reject=reject)

# compute correlation scores, get bad indices sorted by score
eog_epochs = create_eog_epochs(raw, ch_name='MRT31-2908', reject=reject)
eog_inds, eog_scores = ica.find_bads_eog(eog_epochs, ch_name='MRT31-2908')
ica.plot_scores(eog_scores, eog_inds)  # see scores the selection is based on
ica.plot_components(eog_inds)  # view topographic sensitivity of components
ica.exclude += eog_inds[:1]  # we saw the 2nd ECG component looked too dipolar
ica.plot_overlay(eog_epochs.average())  # inspect artifact removal
ica.apply(epochs)  # clean data, default in place

evoked = [epochs[k].average() for k in event_ids]

contrast = combine_evoked(evoked, weights=[-1, 1])  # Faces - scrambled

evoked.append(contrast)

for e in evoked:
    e.plot(ylim=dict(mag=[-400, 400]))

plt.show()

# estimate noise covarariance
noise_cov = mne.compute_covariance(epochs, tmax=0, method='shrunk',
开发者ID:jhouck,项目名称:mne-python,代码行数:33,代码来源:spm_faces_dataset.py

示例6: red

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import plot_overlay [as 别名]
show_picks = np.abs(scores).argsort()[::-1][:5]  # indices of top five scores

# detected artifacts drawn in red (via exclude)
ica.plot_sources(raw, show_picks, exclude=eog_inds, start=0., stop=3.0)
ica.plot_components(eog_inds, colorbar=False)  # show component sensitivites

ica.exclude += eog_inds[:1]  # mark first for exclusion

###############################################################################
# 3) check detection and visualize artifact rejection

# estimate average artifact
eog_evoked = eog_epochs.average()
ica.plot_sources(eog_evoked)  # latent EOG sources + selction
ica.plot_overlay(eog_evoked)  # overlay raw and clean EOG artifacts

# check the amplitudes do not change
ica.plot_overlay(raw)  # EOG artifacts remain

###############################################################################
# To save an ICA solution you can say:
# >>> ica.save('my_ica.fif')
#
# You can later restore the session by saying:
# >>> from mne.preprocessing import read_ica
# >>> read_ica('my_ica.fif')
#
# Apply the solution to Raw, Epochs or Evoked like this:
# >>> ica.apply(epochs, copy=False)
开发者ID:katcharewich,项目名称:mne-python,代码行数:31,代码来源:plot_ica_from_raw.py

示例7: ica_method

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import plot_overlay [as 别名]
def ica_method(raw, picks, plot='n', save ='n'):
    
    
    ###############################################################################
    # 1) Fit ICA model using the FastICA algorithm
    # Other available choices are `infomax` or `extended-infomax`
    # We pass a float value between 0 and 1 to select n_components based on the
    # percentage of variance explained by the PCA components.
    
    ica = ICA(n_components=0.95, method='fastica')
    
    picks = mne.pick_types(raw.info, meg=False, eeg=True, eog=False,
                           stim=False, exclude='bads')
    
    ica.fit(raw, picks=picks, decim=3)
    
    # maximum number of components to reject
    n_max_eog =  1  # here we don't expect horizontal EOG components
    
    ###############################################################################
    # 2) identify bad components by analyzing latent sources.
    
    
    # detect EOG by correlation
    
    eog_inds, scores = ica.find_bads_eog(raw, threshold=2.5)    
    show_picks = np.abs(scores).argsort()[::-1][:5]
    eog_inds = eog_inds[:n_max_eog]
    ica.exclude += eog_inds
    
    ###############################################################################
    # 3) Assess component selection and unmixing quality
    eog_evoked = create_eog_epochs(raw, tmin=-.5, tmax=.5, picks=picks).average()
    
    if plot=='y':
        
        title = 'Sources related to %s artifacts (red)'
        ica.plot_scores(scores, exclude=eog_inds, title=title % 'eog', labels='eog')
        if save=='y':
            pylab.savefig('2.png')

        ica.plot_sources(raw, show_picks, exclude=eog_inds, title=title % 'eog')
        if save=='y':
            pylab.savefig('3.png')

        ica.plot_components(eog_inds, title=title % 'eog', colorbar=True)
        if save=='y':

            pylab.savefig('4.png')

        ica.plot_overlay(raw)  # EOG artifacts remain
        if save=='y':

            pylab.savefig('5.png')

        ica.plot_sources(eog_evoked, exclude=eog_inds)  # plot EOG sources + selection
        if save=='y':

            pylab.savefig('6.png')

        ica.plot_overlay(eog_evoked, exclude=eog_inds)  # plot EOG cleaning
        if save=='y':
            pylab.savefig('7.png')


    ica.apply(raw, exclude=eog_inds)    
    eeg_only_after=raw.pick_types(meg=False, eeg=True)    
    

    return eeg_only_after
    
开发者ID:RenatoBMLR,项目名称:ProjectSigma205,代码行数:72,代码来源:ValidationICA.py

示例8:

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import plot_overlay [as 别名]
fig = ica.plot_scores(scores, exclude=eog_inds,
                      title=title % ('eog', subject))
fig.savefig(save_folder + "pics/%s_%s_eog_scores.png" % (subject,
                                                         condition))
                                                         

fig = ica.plot_sources(eog_average, exclude=None)
fig.savefig(save_folder + "pics/%s_%s_eog_source.png" % (subject,
                                                         condition))

fig = ica.plot_components(ica.exclude, title=title % ('eog', subject),
                          colorbar=True)
fig.savefig(save_folder + "pics/%s_%s_eog_component.png" % (subject,
                                                            condition))
fig = ica.plot_overlay(eog_average, exclude=None, show=False)                                                                
fig.savefig(save_folder + "pics/%s_%s_eog_excluded.png" % (subject,
                                                            condition))


# del eog_epochs, eog_average

##########################################################################
# Apply the solution to Raw, Epochs or Evoked like this:
raw_ica = ica.apply(raw)
ica.save(save_folder + "%s_%s-ica.fif" % (subject, condition))  # save ICA
# componenets
# Save raw with ICA removed
raw_ica.save(save_folder + "%s_%s_filtered_ica_mc_tsss-raw.fif" % (
    subject, condition),
             overwrite=True)
开发者ID:MadsJensen,项目名称:RP_scripts,代码行数:32,代码来源:ICA_interactive.py

示例9: list

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import plot_overlay [as 别名]
    show_picks = mscores.argsort()[::-1][:5]
    eog_inds = list(show_picks[:n_max_eog])
    ica.exclude += eog_inds

    fig = ica.plot_scores(scores, exclude=eog_inds, title=title % 'eog')
    fig.savefig(img_folder + '/ica_eog_scores.png')

    fig = ica.plot_sources(epochs, show_picks, exclude=eog_inds, title=title % 'eog')
    fig.savefig(img_folder + '/ica_eog_sources.png')
    fig = ica.plot_components(show_picks, title=title % 'eog', colorbar=True)
    fig.set_size_inches(12.,8.)
    fig.savefig(img_folder + '/ica_eog_components.png')

    # Now exclude what we find
    # epochs_ica = ica.apply(epochs, copy=True)
    #evo_ica = epochs_ica.average()
    evo= epochs.average()

    #megp = pick_types(epochs.info, meg=True, eog=False)
    #eogp = pick_types(epochs.info, meg=False, eog=True)
    #fig = ica.plot_overlay(evo, picks=megp)  # 
    fig = ica.plot_overlay(evo)  # 
    fig.savefig(img_folder + '/ica_evo_overlay_meg.png')
    #fig = ica.plot_overlay(evo, picks=eogp)  # 
    #fig.savefig(img_folder + '/ica_evo_overlay_eog.png')

    #fig = evo.plot()
    #fig.savefig(img_folder + '/epevo.png')
    #fig = evo_ica.plot()
    #fig.savefig(img_folder + '/epevo_ica.png')
开发者ID:cjayb,项目名称:VSC-MEG-analysis,代码行数:32,代码来源:plot_ica_from_epochs_example.py

示例10: create_eog_epochs

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import plot_overlay [as 别名]
fig.savefig(img_folder + '/ica_heog_sources.png')
fig = ica.plot_components(show_picks_h, title=title % 'heog', colorbar=True)
fig.set_size_inches(12.,8.)
fig.savefig(img_folder + '/ica_heog_components.png')

heog_inds = heog_inds[:2] # manually determined, take only first two ICs
ica.exclude += heog_inds

###############################################################################
# 3) Assess component selection and unmixing quality

# estimate average artifact
ecg_evoked = ecg_epochs.average()
fig = ica.plot_sources(ecg_evoked, exclude=ecg_inds)  # plot ECG sources + selection
fig.savefig(img_folder + '/ica_ecg_evoked_sources.png')
fig = ica.plot_overlay(ecg_evoked, exclude=ecg_inds)  # plot ECG cleaning
fig.savefig(img_folder + '/ica_ecg_evoked_overlay.png')

#eog_evoked = create_eog_epochs(raw, tmin=-.5, tmax=.5, picks=picks).average()
#fig = ica.plot_sources(eog_evoked, exclude=eog_inds)  # plot EOG sources + selection
#fig.savefig(img_folder + '/ica_eog_evoked_sources.png')
#fig = ica.plot_overlay(eog_evoked, exclude=eog_inds)  # plot EOG cleaning
#fig.savefig(img_folder + '/ica_eog_evoked_overlay.png')

tmp=ica.exclude
ica.exclude = []
veog_evoked = create_eog_epochs(raw, ch_name='EOG001', tmin=-.5, tmax=.5, picks=picks).average()
fig = ica.plot_sources(veog_evoked, exclude=veog_inds)  # plot EOG sources + selection
fig.savefig(img_folder + '/ica_veog_evoked_sources_veog_inds.png')
fig = ica.plot_overlay(veog_evoked, exclude=veog_inds)  # plot EOG cleaning
fig.savefig(img_folder + '/ica_veog_evoked_overlay_veog_inds.png')
开发者ID:cjayb,项目名称:VSC-MEG-analysis,代码行数:33,代码来源:plot_ica_from_raw_example.py

示例11: ICA

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import plot_overlay [as 别名]
ica = ICA(n_components=0.95).fit(epochs)

###############################################################################
# 2) Find ECG Artifacts

# generate ECG epochs to improve detection by correlation
ecg_epochs = create_ecg_epochs(raw, tmin=-.5, tmax=.5, picks=picks)

ecg_inds, scores = ica.find_bads_ecg(ecg_epochs)
ica.plot_scores(scores, exclude=ecg_inds)

title = 'Sources related to %s artifacts (red)'
show_picks = np.abs(scores).argsort()[::-1][:5]

ica.plot_sources(epochs, show_picks, exclude=ecg_inds, title=title % 'ecg')
ica.plot_components(ecg_inds, title=title % 'ecg')

ica.exclude += ecg_inds[:3]  # whatever happens, we take 3

###############################################################################
# 3) Assess component selection and unmixing quality

# estimate average artifact
ecg_evoked = ecg_epochs.average()
ica.plot_sources(ecg_evoked)  # plot ECG sources + selection
ica.plot_overlay(ecg_evoked)  # plot ECG cleaning

# check effect on ERF of interest
epochs.crop(-.2, None)  # crop to baseline of interest
ica.plot_overlay(epochs['aud_l'].average())  # plot remaining left auditory ERF
开发者ID:katcharewich,项目名称:mne-python,代码行数:32,代码来源:plot_ica_from_epochs.py

示例12: runICA

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import plot_overlay [as 别名]

#.........这里部分代码省略.........
            ica_plot.savefig(saveRoot + name + '_comps_eog' + map(str, eog_exclude)[0] +
            '-ecg_none' + '.pdf', format = 'pdf')
        elif len(ecg_exclude) == 1:
            ica_plot.savefig(saveRoot + name + '_comps_eog' + map(str, eog_exclude)[0] +
            '-ecg' + map(str, ecg_exclude)[0] + '.pdf', format = 'pdf')
        elif len(ecg_exclude) == 2:
            ica_plot.savefig(saveRoot + name + '_comps_eog' + map(str, eog_exclude)[0] +
            '-ecg' + map(str, ecg_exclude)[0] + '_' + map(str, ecg_exclude)[1] + '.pdf', format = 'pdf')
        elif len(ecg_exclude) == 3:
            ica_plot.savefig(saveRoot + name + '_comps_eog' + map(str, eog_exclude)[0] +
            '-ecg' + map(str, ecg_exclude)[0] + '_' + map(str, ecg_exclude)[1] + '_' + map(str, ecg_exclude)[2] + '.pdf', format = 'pdf')
    elif len(eog_exclude) == 2:
        if len(ecg_exclude) == 0:
            ica_plot.savefig(saveRoot + name + '_comps_eog' + map(str, eog_exclude)[0] + '_' + map(str, eog_exclude)[1] +
            '-ecg_none' + '.pdf', format = 'pdf')
        elif len(ecg_exclude) == 1:
            ica_plot.savefig(saveRoot + name + '_comps_eog' + map(str, eog_exclude)[0] + '_' + map(str, eog_exclude)[1] +
            '-ecg' + map(str, ecg_exclude)[0] + '.pdf', format = 'pdf')
        elif len(ecg_exclude) == 2:
            ica_plot.savefig(saveRoot + name + '_comps_eog' + map(str, eog_exclude)[0] + '_' + map(str, eog_exclude)[1] +
            '-ecg' + map(str, ecg_exclude)[0] + '_' + map(str, ecg_exclude)[1] + '.pdf', format = 'pdf')
        elif len(ecg_exclude) == 3:
            ica_plot.savefig(saveRoot + name + '_comps_eog' + map(str, eog_exclude)[0] + '_' + map(str, eog_exclude)[1] +
            '-ecg' + map(str, ecg_exclude)[0] + '_' + map(str, ecg_exclude)[1] + '_' + map(str, ecg_exclude)[2] + '.pdf', format = 'pdf')
    
    # plot the scores for the different components highlighting in red that/those related to ECG
    scores_plots_ecg=ica.plot_scores(ecg_scores, exclude=ecg_source_idx, title=title % 'ecg')
    scores_plots_ecg.savefig(saveRoot + name + '_ecg_scores.pdf', format = 'pdf')
    scores_plots_eog=ica.plot_scores(eog_scores, exclude=eog_source_idx, title=title % 'eog')
    scores_plots_eog.savefig(saveRoot + name + '_eog_scores.pdf', format = 'pdf')
    source_source_ecg=ica.plot_sources(ecg_evoked, exclude=ecg_source_idx)
    source_source_ecg.savefig(saveRoot + name + '_ecg_source.pdf', format = 'pdf')
    #ax = plt.subplot(2,1,2)
    source_clean_ecg=ica.plot_overlay(ecg_evoked, exclude=ecg_source_idx)
    source_clean_ecg.savefig(saveRoot + name + '_ecg_clean.pdf', format = 'pdf')
    #clean_plot.savefig(saveRoot + name + '_ecg_clean.pdf', format = 'pdf')
        
    #if len(eog_exclude) > 0:
    source_source_eog=ica.plot_sources(eog_evoked, exclude=eog_source_idx)
    source_source_eog.savefig(saveRoot + name + '_eog_source.pdf', format = 'pdf')
    source_clean_eog=ica.plot_overlay(eog_evoked, exclude=eog_source_idx)
    source_clean_eog.savefig(saveRoot + name + '_eog_clean.pdf', format = 'pdf')
   
    
    overl_plot = ica.plot_overlay(raw)
    overl_plot.savefig(saveRoot + name + '_overl.pdf', format = 'pdf')
    
    event_id = 999
    ecg_events, _, _ = mne.preprocessing.find_ecg_events(raw, event_id,
                             ch_name=raw.ch_names[ecg_picks].encode('UTF8'))
    picks = mne.pick_types(raw.info, meg=False, eeg=False, stim=False, ecg=True)

    tmin, tmax = -0.1, 0.1
    epochs_ecg = mne.Epochs(raw, ecg_events, event_id, tmin, tmax,picks=picks)
    data_ecg = epochs_ecg.get_data()

    event_id = 998
    eog_events = mne.preprocessing.find_eog_events(raw, event_id,
                                   ch_name=raw.ch_names[eog_picks].encode('UTF8'))
    picks = mne.pick_types(raw.info, meg=False, eeg=False, stim=False, eog=True,
                           exclude='bads')
    tmin, tmax = -0.5, 0.5
    epochs_eog = mne.Epochs(raw, eog_events, event_id, tmin, tmax,picks=[picks[0]])#,
    data_eog = epochs_eog.get_data()

    plSize = 1
开发者ID:sarathykousik,项目名称:pipelines,代码行数:70,代码来源:analysisPipelineFunctions_eog-ecg.py

示例13: runICA

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import plot_overlay [as 别名]

#.........这里部分代码省略.........
                                          
    #ica_plot = ica.plot_components(source_idx)

    # select ICA sources and reconstruct MEG signals, compute clean ERFs
    # Add detected artefact sources to exclusion list
    # We now add the eog artefacts to the ica.exclusion list
    if not ecg_source_idx:
        print("No ECG components above threshold were identified for subject " + name +
        " - selecting the component with the highest score under threshold")
        ecg_exclude = [np.absolute(ecg_scores).argmax()]
        ecg_source_idx=[np.absolute(ecg_scores).argmax()]
    elif ecg_source_idx:
        ecg_exclude += ecg_source_idx[:n_max_ecg]
    ica.exclude += ecg_exclude

    if not eog_source_idx:
        if np.absolute(eog_scores).any>0.3:
            eog_exclude=[np.absolute(eog_scores).argmax()]
            eog_source_idx=[np.absolute(eog_scores).argmax()]
            print("No EOG components above threshold were identified " + name +
            " - selecting the component with the highest score under threshold above 0.3")
        elif not np.absolute(eog_scores).any>0.3:
            eog_exclude=[]
            print("No EOG components above threshold were identified" + name)
    elif eog_source_idx:
         eog_exclude += eog_source_idx

    ica.exclude += eog_exclude

    print('########## saving')
    if len(eog_exclude) == 0:
        if len(ecg_exclude) == 0:
            ica_plot.savefig(saveRoot + name + '_comps_eog_none-ecg_none' + '.pdf', format = 'pdf')
        elif len(ecg_exclude) == 1:
            ica_plot.savefig(saveRoot + name + '_comps_eog_none-ecg' + map(str, ecg_exclude)[0] + '.pdf', format = 'pdf')
        elif len(ecg_exclude) == 2:
            ica_plot.savefig(saveRoot + name + '_comps_eog_none-ecg' + map(str, ecg_exclude)[0] + '_' + map(str, ecg_exclude)[1] + '.pdf', format = 'pdf')
        elif len(ecg_exclude) == 3:
            ica_plot.savefig(saveRoot + name + '_comps_eog_none-ecg' + map(str, ecg_exclude)[0] + '_' + map(str, ecg_exclude)[1] + '_' + map(str, ecg_exclude)[2] + '.pdf', format = 'pdf')
    elif len(eog_exclude) == 1:
        if len(ecg_exclude) == 0:
            ica_plot.savefig(saveRoot + name + '_comps_eog' + map(str, eog_exclude)[0] +
            '-ecg_none' + '.pdf', format = 'pdf')
        elif len(ecg_exclude) == 1:
            ica_plot.savefig(saveRoot + name + '_comps_eog' + map(str, eog_exclude)[0] +
            '-ecg' + map(str, ecg_exclude)[0] + '.pdf', format = 'pdf')
        elif len(ecg_exclude) == 2:
            ica_plot.savefig(saveRoot + name + '_comps_eog' + map(str, eog_exclude)[0] +
            '-ecg' + map(str, ecg_exclude)[0] + '_' + map(str, ecg_exclude)[1] + '.pdf', format = 'pdf')
        elif len(ecg_exclude) == 3:
            ica_plot.savefig(saveRoot + name + '_comps_eog' + map(str, eog_exclude)[0] +
            '-ecg' + map(str, ecg_exclude)[0] + '_' + map(str, ecg_exclude)[1] + '_' + map(str, ecg_exclude)[2] + '.pdf', format = 'pdf')
    elif len(eog_exclude) == 2:
        if len(ecg_exclude) == 0:
            ica_plot.savefig(saveRoot + name + '_comps_eog' + map(str, eog_exclude)[0] + '_' + map(str, eog_exclude)[1] +
            '-ecg_none' + '.pdf', format = 'pdf')
        elif len(ecg_exclude) == 1:
            ica_plot.savefig(saveRoot + name + '_comps_eog' + map(str, eog_exclude)[0] + '_' + map(str, eog_exclude)[1] +
            '-ecg' + map(str, ecg_exclude)[0] + '.pdf', format = 'pdf')
        elif len(ecg_exclude) == 2:
            ica_plot.savefig(saveRoot + name + '_comps_eog' + map(str, eog_exclude)[0] + '_' + map(str, eog_exclude)[1] +
            '-ecg' + map(str, ecg_exclude)[0] + '_' + map(str, ecg_exclude)[1] + '.pdf', format = 'pdf')
        elif len(ecg_exclude) == 3:
            ica_plot.savefig(saveRoot + name + '_comps_eog' + map(str, eog_exclude)[0] + '_' + map(str, eog_exclude)[1] +
            '-ecg' + map(str, ecg_exclude)[0] + '_' + map(str, ecg_exclude)[1] + '_' + map(str, ecg_exclude)[2] + '.pdf', format = 'pdf')
    
    # plot the scores for the different components highlighting in red that/those related to ECG
    #scores_plots=plt.figure()
    #ax = plt.subplot(2,1,1)
    scores_plots_ecg=ica.plot_scores(ecg_scores, exclude=ecg_source_idx, title=title % 'ecg')
    scores_plots_ecg.savefig(saveRoot + name + '_ecg_scores.pdf', format = 'pdf')
    #ax = plt.subplot(2,1,2)
    scores_plots_eog=ica.plot_scores(eog_scores, exclude=eog_source_idx, title=title % 'eog')
    scores_plots_eog.savefig(saveRoot + name + '_eog_scores.pdf', format = 'pdf')
    
    #if len(ecg_exclude) > 0:    
    # estimate average artifact
    #source_clean_ecg=plt.figure()
    #ax = plt.subplot(2,1,1)
    source_source_ecg=ica.plot_sources(ecg_evoked, exclude=ecg_source_idx)
    source_source_ecg.savefig(saveRoot + name + '_ecg_source.pdf', format = 'pdf')
    #ax = plt.subplot(2,1,2)
    source_clean_ecg=ica.plot_overlay(ecg_evoked, exclude=ecg_source_idx)
    source_clean_ecg.savefig(saveRoot + name + '_ecg_clean.pdf', format = 'pdf')
    #clean_plot.savefig(saveRoot + name + '_ecg_clean.pdf', format = 'pdf')
        
    #if len(eog_exclude) > 0:
    source_source_eog=ica.plot_sources(eog_evoked, exclude=eog_source_idx)
    source_source_eog.savefig(saveRoot + name + '_eog_source.pdf', format = 'pdf')
    source_clean_eog=ica.plot_overlay(eog_evoked, exclude=eog_source_idx)
    source_clean_eog.savefig(saveRoot + name + '_eog_clean.pdf', format = 'pdf')
   
    
    overl_plot = ica.plot_overlay(raw)
    overl_plot.savefig(saveRoot + name + '_overl.pdf', format = 'pdf')
                
    plt.close('all')
    ## restore sensor space data
    icaList = ica.apply(raw)
    return(icaList, ica)
开发者ID:ahoejlund,项目名称:mne-python-preproc,代码行数:104,代码来源:ICA_analysisPipelineFunctions_local.py

示例14: compute_ica

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import plot_overlay [as 别名]
def compute_ica(subject):
    """Function will compute ICA on raw and apply the ICA.

    params:
    subject : str
        the subject id to be loaded
    """
    raw = Raw(save_folder + "%s_filtered_data_mc_raw_tsss.fif" % subject,
              preload=True)

    # ICA Part
    ica = ICA(n_components=0.95, method='fastica', max_iter=256)

    picks = mne.pick_types(raw.info, meg=True, eeg=True,
                           stim=False, exclude='bads')

    ica.fit(raw, picks=picks, decim=decim, reject=reject)

    # maximum number of components to reject
    n_max_ecg, n_max_eog = 3, 1

    ##########################################################################
    # 2) identify bad components by analyzing latent sources.
    title = 'Sources related to %s artifacts (red) for sub: %s'

    # generate ECG epochs use detection via phase statistics
    ecg_epochs = create_ecg_epochs(raw, ch_name="ECG002",
                                   tmin=-.5, tmax=.5, picks=picks)
    n_ecg_epochs_found = len(ecg_epochs.events)
    sel_ecg_epochs = np.arange(0, n_ecg_epochs_found, 10)
    ecg_epochs = ecg_epochs[sel_ecg_epochs]

    ecg_inds, scores = ica.find_bads_ecg(ecg_epochs, method='ctps')
    fig = ica.plot_scores(scores, exclude=ecg_inds,
                          title=title % ('ecg', subject))
    fig.savefig(save_folder + "pics/%s_ecg_scores.png" % subject)

    if ecg_inds:
        show_picks = np.abs(scores).argsort()[::-1][:5]

        fig = ica.plot_sources(raw, show_picks, exclude=ecg_inds,
                               title=title % ('ecg', subject), show=False)
        fig.savefig(save_folder + "pics/%s_ecg_sources.png" % subject)
        fig = ica.plot_components(ecg_inds, title=title % ('ecg', subject),
                                  colorbar=True)
        fig.savefig(save_folder + "pics/%s_ecg_component.png" % subject)

        ecg_inds = ecg_inds[:n_max_ecg]
        ica.exclude += ecg_inds

    # estimate average artifact
    ecg_evoked = ecg_epochs.average()
    del ecg_epochs

    # plot ECG sources + selection
    fig = ica.plot_sources(ecg_evoked, exclude=ecg_inds)
    fig.savefig(save_folder + "pics/%s_ecg_sources_ave.png" % subject)

    # plot ECG cleaning
    ica.plot_overlay(ecg_evoked, exclude=ecg_inds)
    fig.savefig(save_folder + "pics/%s_ecg_sources_clean_ave.png" % subject)

    # DETECT EOG BY CORRELATION
    # HORIZONTAL EOG
    eog_epochs = create_eog_epochs(raw, ch_name="EOG001")
    eog_inds, scores = ica.find_bads_eog(raw)
    fig = ica.plot_scores(scores, exclude=eog_inds,
                          title=title % ('eog', subject))
    fig.savefig(save_folder + "pics/%s_eog_scores.png" % subject)

    fig = ica.plot_components(eog_inds, title=title % ('eog', subject),
                              colorbar=True)
    fig.savefig(save_folder + "pics/%s_eog_component.png" % subject)

    eog_inds = eog_inds[:n_max_eog]
    ica.exclude += eog_inds

    del eog_epochs

    ##########################################################################
    # Apply the solution to Raw, Epochs or Evoked like this:
    raw_ica = ica.apply(raw, copy=False)
    ica.save(save_folder + "%s-ica.fif" % subject)  # save ICA componenets
    # Save raw with ICA removed
    raw_ica.save(save_folder + "%s_filtered_ica_mc_raw_tsss.fif" % subject,
                 overwrite=True)
    plt.close("all")
开发者ID:MadsJensen,项目名称:malthe_alpha_project,代码行数:89,代码来源:filter_ICA.py

示例15:

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import plot_overlay [as 别名]
    ica.exclude += eog_inds

    if eog_inds:
        fig = ica.plot_scores(
            scores, exclude=eog_inds, title=title % ('eog', subject))
        fig.savefig(ica_folder + "plots/%s_%s_eog_scores_2.png" % (subject,
                                                                   condition))
        fig = ica.plot_sources(eog_average, exclude=eog_inds)
        fig.savefig(ica_folder + "plots/%s_%s_eog_source_2.png" % (subject,
                                                                   condition))

        fig = ica.plot_components(
            eog_inds, title=title % ('eog', subject), colorbar=True)
        fig.savefig(ica_folder + "plots/%s_%s_eog_component_2.png" % (
            subject, condition))
        fig = ica.plot_overlay(eog_average, exclude=eog_inds, show=False)
        fig.savefig(ica_folder + "plots/%s_%s_eog_excluded_2.png" % (
            subject, condition))

    del eog_epochs, eog_average

    # ECG
    ecg_epochs = create_ecg_epochs(raw, tmin=-.5, tmax=.5)
    ecg_inds, scores = ica.find_bads_ecg(ecg_epochs)
    ecg_inds = ecg_inds[:n_max_ecg]
    ica.exclude.extend(ecg_inds)

    if ecg_inds:
        fig = ica.plot_components(
            ecg_inds, title=title % ('ecg', subject), colorbar=True)
        fig.savefig(ica_folder + "plots/%s_%s_ecg_component_2.png" % (
开发者ID:MadsJensen,项目名称:RP_scripts,代码行数:33,代码来源:filter_ICA.py


注:本文中的mne.preprocessing.ICA.plot_overlay方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。