当前位置: 首页>>代码示例>>Python>>正文


Python ICA.plot_topomap方法代码示例

本文整理汇总了Python中mne.preprocessing.ICA.plot_topomap方法的典型用法代码示例。如果您正苦于以下问题:Python ICA.plot_topomap方法的具体用法?Python ICA.plot_topomap怎么用?Python ICA.plot_topomap使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mne.preprocessing.ICA的用法示例。


在下文中一共展示了ICA.plot_topomap方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_plot_ica_topomap

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import plot_topomap [as 别名]
def test_plot_ica_topomap():
    """Test plotting of ICA solutions
    """
    ica = ICA(noise_cov=read_cov(cov_fname), n_components=2,
              max_pca_components=3, n_pca_components=3)
    ica.decompose_raw(raw, picks=ica_picks)
    for components in [0, [0], [0, 1], [0, 1] * 7]:
        ica.plot_topomap(components)
    ica.info = None
    assert_raises(RuntimeError, ica.plot_topomap, 1)
开发者ID:emanuele,项目名称:mne-python,代码行数:12,代码来源:test_viz.py

示例2: test_plot_ica_topomap

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import plot_topomap [as 别名]
def test_plot_ica_topomap():
    """Test plotting of ICA solutions
    """
    raw = _get_raw()
    ica = ICA(noise_cov=read_cov(cov_fname), n_components=2,
              max_pca_components=3, n_pca_components=3)
    ica_picks = fiff.pick_types(raw.info, meg=True, eeg=False, stim=False,
                                ecg=False, eog=False, exclude='bads')
    ica.decompose_raw(raw, picks=ica_picks)
    for components in [0, [0], [0, 1], [0, 1] * 7]:
        ica.plot_topomap(components)
    ica.info = None
    assert_raises(RuntimeError, ica.plot_topomap, 1)
    plt.close('all')
开发者ID:dichaelen,项目名称:mne-python,代码行数:16,代码来源:test_viz.py

示例3: test_plot_ica_topomap

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import plot_topomap [as 别名]
def test_plot_ica_topomap():
    """Test plotting of ICA solutions
    """
    raw = _get_raw()
    ica = ICA(noise_cov=read_cov(cov_fname), n_components=2, max_pca_components=3, n_pca_components=3)
    ica_picks = pick_types(raw.info, meg=True, eeg=False, stim=False, ecg=False, eog=False, exclude="bads")
    ica.decompose_raw(raw, picks=ica_picks)
    warnings.simplefilter("always", UserWarning)
    with warnings.catch_warnings(record=True):
        for components in [0, [0], [0, 1], [0, 1] * 7]:
            ica.plot_topomap(components)
    ica.info = None
    assert_raises(RuntimeError, ica.plot_topomap, 1)
    plt.close("all")
开发者ID:rgoj,项目名称:mne-python,代码行数:16,代码来源:test_viz.py

示例4: dict

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import plot_topomap [as 别名]
tmin, tmax = -0.2, 0.6
baseline = None  # no baseline as high-pass is applied
reject = dict(mag=1.5e-12)

epochs = mne.Epochs(raw, events, event_ids, tmin, tmax, picks=picks, baseline=baseline, preload=True, reject=reject)

# Fit ICA, find and remove major artifacts

ica = ICA(None, 50).decompose_epochs(epochs, decim=2)

for ch_name in ["MRT51-2908", "MLF14-2908"]:  # ECG, EOG contaminated chs
    scores = ica.find_sources_epochs(epochs, ch_name, "pearsonr")
    ica.exclude += list(np.argsort(np.abs(scores))[-2:])

ica.plot_topomap(np.unique(ica.exclude))  # plot components found


# select ICA sources and reconstruct MEG signals, compute clean ERFs

epochs = ica.pick_sources_epochs(epochs)

evoked = [epochs[k].average() for k in event_ids]

contrast = evoked[1] - evoked[0]

evoked.append(contrast)

for e in evoked:
    e.plot(ylim=dict(mag=[-400, 400]))
开发者ID:kingjr,项目名称:mne-python,代码行数:31,代码来源:plot_spm_faces_dataset.py

示例5: range

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import plot_topomap [as 别名]
          max_pca_components=100,
          noise_cov=None)

ica.decompose_epochs(epochs)

eog_scores_1_normal = ica.find_sources_epochs(epochs, target="EOG001",
                                              score_func="pearsonr")
eog_scores_2_normal = ica.find_sources_epochs(epochs, target="EOG003",
                                              score_func="pearsonr")

# get maximum correlation index for EOG
eog_source_idx_1_normal = np.abs(eog_scores_1_normal).argmax()
eog_source_idx_2_normal = np.abs(eog_scores_2_normal).argmax()

source_idx = range(0, ica.n_components_)
ica.plot_topomap(source_idx, ch_type="mag")


# select ICA sources and reconstruct MEG signals, compute clean ERFs
# Add detected artefact sources to exclusion list
# We now add the eog artefacts to the ica.exclusion list
if eog_source_idx_1_normal == eog_source_idx_2_normal:
    ica.exclude += [eog_source_idx_1_normal]
elif eog_source_idx_1_normal != eog_source_idx_2_normal:
    ica.exclude += [eog_source_idx_1_normal, eog_source_idx_2_normal]

# remove ECG
ecg_ch_name = 'ECG002'
ecg_scores = ica.find_sources_epochs(epochs, target=ecg_ch_name,
                                     score_func='pearsonr')
开发者ID:MadsJensen,项目名称:Intro_to_Linux_Bash_and_MNE,代码行数:32,代码来源:MNE_script.py


注:本文中的mne.preprocessing.ICA.plot_topomap方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。