当前位置: 首页>>代码示例>>Python>>正文


Python ICA.exclude方法代码示例

本文整理汇总了Python中mne.preprocessing.ICA.exclude方法的典型用法代码示例。如果您正苦于以下问题:Python ICA.exclude方法的具体用法?Python ICA.exclude怎么用?Python ICA.exclude使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mne.preprocessing.ICA的用法示例。


在下文中一共展示了ICA.exclude方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_plot_ica_sources

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import exclude [as 别名]
def test_plot_ica_sources():
    """Test plotting of ICA panel."""
    raw = read_raw_fif(raw_fname).crop(0, 1).load_data()
    picks = _get_picks(raw)
    epochs = _get_epochs()
    raw.pick_channels([raw.ch_names[k] for k in picks])
    ica_picks = pick_types(raw.info, meg=True, eeg=False, stim=False,
                           ecg=False, eog=False, exclude='bads')
    ica = ICA(n_components=2, max_pca_components=3, n_pca_components=3)
    ica.fit(raw, picks=ica_picks)
    ica.exclude = [1]
    fig = ica.plot_sources(raw)
    fig.canvas.key_press_event('escape')
    # Sadly close_event isn't called on Agg backend and the test always passes.
    assert_array_equal(ica.exclude, [1])
    plt.close('all')

    # dtype can change int->np.int after load, test it explicitly
    ica.n_components_ = np.int64(ica.n_components_)
    fig = ica.plot_sources(raw, [1])
    # also test mouse clicks
    data_ax = fig.axes[0]
    _fake_click(fig, data_ax, [-0.1, 0.9])  # click on y-label

    raw.info['bads'] = ['MEG 0113']
    pytest.raises(RuntimeError, ica.plot_sources, inst=raw)
    ica.plot_sources(epochs)
    epochs.info['bads'] = ['MEG 0113']
    pytest.raises(RuntimeError, ica.plot_sources, inst=epochs)
    epochs.info['bads'] = []
    ica.plot_sources(epochs.average())
    evoked = epochs.average()
    fig = ica.plot_sources(evoked)
    # Test a click
    ax = fig.get_axes()[0]
    line = ax.lines[0]
    _fake_click(fig, ax,
                [line.get_xdata()[0], line.get_ydata()[0]], 'data')
    _fake_click(fig, ax,
                [ax.get_xlim()[0], ax.get_ylim()[1]], 'data')
    # plot with bad channels excluded
    ica.plot_sources(evoked, exclude=[0])
    ica.exclude = [0]
    ica.plot_sources(evoked)  # does the same thing
    ica.labels_ = dict(eog=[0])
    ica.labels_['eog/0/crazy-channel'] = [0]
    ica.plot_sources(evoked)  # now with labels
    pytest.raises(ValueError, ica.plot_sources, 'meeow')
    plt.close('all')
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:51,代码来源:test_ica.py

示例2: test_plot_ica_sources

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import exclude [as 别名]
def test_plot_ica_sources():
    """Test plotting of ICA panel
    """
    import matplotlib.pyplot as plt
    raw = io.read_raw_fif(raw_fname,
                          preload=False).crop(0, 1, copy=False).load_data()
    picks = _get_picks(raw)
    epochs = _get_epochs()
    raw.pick_channels([raw.ch_names[k] for k in picks])
    ica_picks = pick_types(raw.info, meg=True, eeg=False, stim=False,
                           ecg=False, eog=False, exclude='bads')
    ica = ICA(n_components=2, max_pca_components=3, n_pca_components=3)
    ica.fit(raw, picks=ica_picks)
    ica.exclude = [1]
    fig = ica.plot_sources(raw)
    fig.canvas.key_press_event('escape')
    # Sadly close_event isn't called on Agg backend and the test always passes.
    assert_array_equal(ica.exclude, [1])

    raw.info['bads'] = ['MEG 0113']
    assert_raises(RuntimeError, ica.plot_sources, inst=raw)
    ica.plot_sources(epochs)
    epochs.info['bads'] = ['MEG 0113']
    assert_raises(RuntimeError, ica.plot_sources, inst=epochs)
    epochs.info['bads'] = []
    with warnings.catch_warnings(record=True):  # no labeled objects mpl
        ica.plot_sources(epochs.average())
        evoked = epochs.average()
        fig = ica.plot_sources(evoked)
        # Test a click
        ax = fig.get_axes()[0]
        line = ax.lines[0]
        _fake_click(fig, ax,
                    [line.get_xdata()[0], line.get_ydata()[0]], 'data')
        _fake_click(fig, ax,
                    [ax.get_xlim()[0], ax.get_ylim()[1]], 'data')
        # plot with bad channels excluded
        ica.plot_sources(evoked, exclude=[0])
        ica.exclude = [0]
        ica.plot_sources(evoked)  # does the same thing
        ica.labels_ = dict(eog=[0])
        ica.labels_['eog/0/crazy-channel'] = [0]
        ica.plot_sources(evoked)  # now with labels
    assert_raises(ValueError, ica.plot_sources, 'meeow')
    plt.close('all')
开发者ID:JuliaSprenger,项目名称:mne-python,代码行数:47,代码来源:test_ica.py

示例3: test_plot_ica_sources

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import exclude [as 别名]
def test_plot_ica_sources():
    """Test plotting of ICA panel
    """
    import matplotlib.pyplot as plt
    raw = io.Raw(raw_fname, preload=False)
    raw.crop(0, 1, copy=False)
    raw.preload_data()
    picks = _get_picks(raw)
    epochs = _get_epochs()
    raw.pick_channels([raw.ch_names[k] for k in picks])
    ica_picks = pick_types(raw.info, meg=True, eeg=False, stim=False,
                           ecg=False, eog=False, exclude='bads')
    ica = ICA(n_components=2, max_pca_components=3, n_pca_components=3)
    ica.fit(raw, picks=ica_picks)
    raw.info['bads'] = ['MEG 0113']
    assert_raises(RuntimeError, ica.plot_sources, inst=raw)
    ica.plot_sources(epochs)
    epochs.info['bads'] = ['MEG 0113']
    assert_raises(RuntimeError, ica.plot_sources, inst=epochs)
    epochs.info['bads'] = []
    with warnings.catch_warnings(record=True):  # no labeled objects mpl
        ica.plot_sources(epochs.average())
        evoked = epochs.average()
        fig = ica.plot_sources(evoked)
        # Test a click
        ax = fig.get_axes()[0]
        line = ax.lines[0]
        _fake_click(fig, ax,
                    [line.get_xdata()[0], line.get_ydata()[0]], 'data')
        _fake_click(fig, ax,
                    [ax.get_xlim()[0], ax.get_ylim()[1]], 'data')
        # plot with bad channels excluded
        ica.plot_sources(evoked, exclude=[0])
        ica.exclude = [0]
        ica.plot_sources(evoked)  # does the same thing
    assert_raises(ValueError, ica.plot_sources, 'meeow')
    plt.close('all')
开发者ID:Odingod,项目名称:mne-python,代码行数:39,代码来源:test_ica.py

示例4: test_ica_additional

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import exclude [as 别名]
def test_ica_additional():
    """Test additional ICA functionality"""
    tempdir = _TempDir()
    stop2 = 500
    raw = Raw(raw_fname).crop(1.5, stop, False)
    raw.load_data()
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')
    test_cov = read_cov(test_cov_name)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')
    epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), preload=True)
    # test if n_components=None works
    with warnings.catch_warnings(record=True):
        ica = ICA(n_components=None,
                  max_pca_components=None,
                  n_pca_components=None, random_state=0)
        ica.fit(epochs, picks=picks, decim=3)
    # for testing eog functionality
    picks2 = pick_types(raw.info, meg=True, stim=False, ecg=False,
                        eog=True, exclude='bads')
    epochs_eog = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks2,
                        baseline=(None, 0), preload=True)

    test_cov2 = test_cov.copy()
    ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4,
              n_pca_components=4)
    assert_true(ica.info is None)
    with warnings.catch_warnings(record=True):
        ica.fit(raw, picks[:5])
    assert_true(isinstance(ica.info, Info))
    assert_true(ica.n_components_ < 5)

    ica = ICA(n_components=3, max_pca_components=4,
              n_pca_components=4)
    assert_raises(RuntimeError, ica.save, '')
    with warnings.catch_warnings(record=True):
        ica.fit(raw, picks=[1, 2, 3, 4, 5], start=start, stop=stop2)

    # test corrmap
    ica2 = ica.copy()
    corrmap([ica, ica2], (0, 0), threshold='auto', label='blinks', plot=True,
            ch_type="mag")
    corrmap([ica, ica2], (0, 0), threshold=2, plot=False, show=False)
    assert_true(ica.labels_["blinks"] == ica2.labels_["blinks"])
    assert_true(0 in ica.labels_["blinks"])
    plt.close('all')

    # test warnings on bad filenames
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        ica_badname = op.join(op.dirname(tempdir), 'test-bad-name.fif.gz')
        ica.save(ica_badname)
        read_ica(ica_badname)
    assert_naming(w, 'test_ica.py', 2)

    # test decim
    ica = ICA(n_components=3, max_pca_components=4,
              n_pca_components=4)
    raw_ = raw.copy()
    for _ in range(3):
        raw_.append(raw_)
    n_samples = raw_._data.shape[1]
    with warnings.catch_warnings(record=True):
        ica.fit(raw, picks=None, decim=3)
    assert_true(raw_._data.shape[1], n_samples)

    # test expl var
    ica = ICA(n_components=1.0, max_pca_components=4,
              n_pca_components=4)
    with warnings.catch_warnings(record=True):
        ica.fit(raw, picks=None, decim=3)
    assert_true(ica.n_components_ == 4)

    # epochs extraction from raw fit
    assert_raises(RuntimeError, ica.get_sources, epochs)
    # test reading and writing
    test_ica_fname = op.join(op.dirname(tempdir), 'test-ica.fif')
    for cov in (None, test_cov):
        ica = ICA(noise_cov=cov, n_components=2, max_pca_components=4,
                  n_pca_components=4)
        with warnings.catch_warnings(record=True):  # ICA does not converge
            ica.fit(raw, picks=picks, start=start, stop=stop2)
        sources = ica.get_sources(epochs).get_data()
        assert_true(ica.mixing_matrix_.shape == (2, 2))
        assert_true(ica.unmixing_matrix_.shape == (2, 2))
        assert_true(ica.pca_components_.shape == (4, len(picks)))
        assert_true(sources.shape[1] == ica.n_components_)

        for exclude in [[], [0]]:
            ica.exclude = [0]
            ica.labels_ = {'foo': [0]}
            ica.save(test_ica_fname)
            ica_read = read_ica(test_ica_fname)
            assert_true(ica.exclude == ica_read.exclude)
            assert_equal(ica.labels_, ica_read.labels_)
            ica.exclude = []
            ica.apply(raw, exclude=[1])
#.........这里部分代码省略.........
开发者ID:mdclarke,项目名称:mne-python,代码行数:103,代码来源:test_ica.py

示例5: test_ica_additional

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import exclude [as 别名]
def test_ica_additional():
    """Test additional ICA functionality
    """
    stop2 = 500
    raw = io.Raw(raw_fname, preload=True).crop(0, stop, False).crop(1.5)
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')
    test_cov = read_cov(test_cov_name)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')
    epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), preload=True)
    # for testing eog functionality
    picks2 = pick_types(raw.info, meg=True, stim=False, ecg=False,
                        eog=True, exclude='bads')
    epochs_eog = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks2,
                        baseline=(None, 0), preload=True)

    test_cov2 = deepcopy(test_cov)
    ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4,
              n_pca_components=4)
    assert_true(ica.info is None)
    ica.decompose_raw(raw, picks[:5])
    assert_true(isinstance(ica.info, Info))
    assert_true(ica.n_components_ < 5)

    ica = ICA(n_components=3, max_pca_components=4,
              n_pca_components=4)
    assert_raises(RuntimeError, ica.save, '')
    ica.decompose_raw(raw, picks=None, start=start, stop=stop2)

    # test warnings on bad filenames
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        ica_badname = op.join(op.dirname(tempdir), 'test-bad-name.fif.gz')
        ica.save(ica_badname)
        read_ica(ica_badname)
    assert_true(len(w) == 2)

    # test decim
    ica = ICA(n_components=3, max_pca_components=4,
              n_pca_components=4)
    raw_ = raw.copy()
    for _ in range(3):
        raw_.append(raw_)
    n_samples = raw_._data.shape[1]
    ica.decompose_raw(raw, picks=None, decim=3)
    assert_true(raw_._data.shape[1], n_samples)

    # test expl var
    ica = ICA(n_components=1.0, max_pca_components=4,
              n_pca_components=4)
    ica.decompose_raw(raw, picks=None, decim=3)
    assert_true(ica.n_components_ == 4)

    # epochs extraction from raw fit
    assert_raises(RuntimeError, ica.get_sources_epochs, epochs)
    # test reading and writing
    test_ica_fname = op.join(op.dirname(tempdir), 'test-ica.fif')
    for cov in (None, test_cov):
        ica = ICA(noise_cov=cov, n_components=2, max_pca_components=4,
                  n_pca_components=4)
        with warnings.catch_warnings(record=True):  # ICA does not converge
            ica.decompose_raw(raw, picks=picks, start=start, stop=stop2)
        sources = ica.get_sources_epochs(epochs)
        assert_true(ica.mixing_matrix_.shape == (2, 2))
        assert_true(ica.unmixing_matrix_.shape == (2, 2))
        assert_true(ica.pca_components_.shape == (4, len(picks)))
        assert_true(sources.shape[1] == ica.n_components_)

        for exclude in [[], [0]]:
            ica.exclude = [0]
            ica.save(test_ica_fname)
            ica_read = read_ica(test_ica_fname)
            assert_true(ica.exclude == ica_read.exclude)
            # test pick merge -- add components
            ica.pick_sources_raw(raw, exclude=[1])
            assert_true(ica.exclude == [0, 1])
            #                 -- only as arg
            ica.exclude = []
            ica.pick_sources_raw(raw, exclude=[0, 1])
            assert_true(ica.exclude == [0, 1])
            #                 -- remove duplicates
            ica.exclude += [1]
            ica.pick_sources_raw(raw, exclude=[0, 1])
            assert_true(ica.exclude == [0, 1])

            # test basic include
            ica.exclude = []
            ica.pick_sources_raw(raw, include=[1])

            ica_raw = ica.sources_as_raw(raw)
            assert_true(ica.exclude == [ica_raw.ch_names.index(e) for e in
                                        ica_raw.info['bads']])

        # test filtering
        d1 = ica_raw._data[0].copy()
        with warnings.catch_warnings(record=True):  # dB warning
            ica_raw.filter(4, 20)
#.........这里部分代码省略.........
开发者ID:eh123,项目名称:mne-python,代码行数:103,代码来源:test_ica.py

示例6: create_eog_epochs

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import exclude [as 别名]
# estimate average artifact
ecg_evoked = ecg_epochs.average()
fig = ica.plot_sources(ecg_evoked, exclude=ecg_inds)  # plot ECG sources + selection
fig.savefig(img_folder + '/ica_ecg_evoked_sources.png')
fig = ica.plot_overlay(ecg_evoked, exclude=ecg_inds)  # plot ECG cleaning
fig.savefig(img_folder + '/ica_ecg_evoked_overlay.png')

#eog_evoked = create_eog_epochs(raw, tmin=-.5, tmax=.5, picks=picks).average()
#fig = ica.plot_sources(eog_evoked, exclude=eog_inds)  # plot EOG sources + selection
#fig.savefig(img_folder + '/ica_eog_evoked_sources.png')
#fig = ica.plot_overlay(eog_evoked, exclude=eog_inds)  # plot EOG cleaning
#fig.savefig(img_folder + '/ica_eog_evoked_overlay.png')

tmp=ica.exclude
ica.exclude = []
veog_evoked = create_eog_epochs(raw, ch_name='EOG001', tmin=-.5, tmax=.5, picks=picks).average()
fig = ica.plot_sources(veog_evoked, exclude=veog_inds)  # plot EOG sources + selection
fig.savefig(img_folder + '/ica_veog_evoked_sources_veog_inds.png')
fig = ica.plot_overlay(veog_evoked, exclude=veog_inds)  # plot EOG cleaning
fig.savefig(img_folder + '/ica_veog_evoked_overlay_veog_inds.png')
fig = ica.plot_sources(veog_evoked, exclude=heog_inds)  # plot EOG sources + selection
fig.savefig(img_folder + '/ica_veog_evoked_sources_heog_inds.png')
fig = ica.plot_overlay(veog_evoked, exclude=heog_inds)  # plot EOG cleaning
fig.savefig(img_folder + '/ica_veog_evoked_overlay_heog_inds.png')
fig = ica.plot_sources(veog_evoked, exclude=eog_inds)  # plot EOG sources + selection
fig.savefig(img_folder + '/ica_veog_evoked_sources_eog_inds.png')
fig = ica.plot_overlay(veog_evoked, exclude=eog_inds)  # plot EOG cleaning
fig.savefig(img_folder + '/ica_veog_evoked_overlay_eog_inds.png')

heog_evoked = create_eog_epochs(raw, ch_name='EOG003', tmin=-.5, tmax=.5, picks=picks).average()
开发者ID:cjayb,项目名称:VSC-MEG-analysis,代码行数:32,代码来源:plot_ica_from_raw_example.py

示例7: test_ica_additional

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import exclude [as 别名]
def test_ica_additional(method):
    """Test additional ICA functionality."""
    _skip_check_picard(method)

    tempdir = _TempDir()
    stop2 = 500
    raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data()
    raw.del_proj()  # avoid warnings
    raw.set_annotations(Annotations([0.5], [0.5], ['BAD']))
    # XXX This breaks the tests :(
    # raw.info['bads'] = [raw.ch_names[1]]
    test_cov = read_cov(test_cov_name)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')[1::2]
    epochs = Epochs(raw, events, None, tmin, tmax, picks=picks,
                    baseline=(None, 0), preload=True, proj=False)
    epochs.decimate(3, verbose='error')
    assert len(epochs) == 4

    # test if n_components=None works
    ica = ICA(n_components=None, max_pca_components=None,
              n_pca_components=None, random_state=0, method=method, max_iter=1)
    with pytest.warns(UserWarning, match='did not converge'):
        ica.fit(epochs)
    # for testing eog functionality
    picks2 = np.concatenate([picks, pick_types(raw.info, False, eog=True)])
    epochs_eog = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks2,
                        baseline=(None, 0), preload=True)
    del picks2

    test_cov2 = test_cov.copy()
    ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4,
              n_pca_components=4, method=method)
    assert (ica.info is None)
    with pytest.warns(RuntimeWarning, match='normalize_proj'):
        ica.fit(raw, picks[:5])
    assert (isinstance(ica.info, Info))
    assert (ica.n_components_ < 5)

    ica = ICA(n_components=3, max_pca_components=4, method=method,
              n_pca_components=4, random_state=0)
    pytest.raises(RuntimeError, ica.save, '')

    ica.fit(raw, picks=[1, 2, 3, 4, 5], start=start, stop=stop2)

    # check passing a ch_name to find_bads_ecg
    with pytest.warns(RuntimeWarning, match='longer'):
        _, scores_1 = ica.find_bads_ecg(raw)
        _, scores_2 = ica.find_bads_ecg(raw, raw.ch_names[1])
    assert scores_1[0] != scores_2[0]

    # test corrmap
    ica2 = ica.copy()
    ica3 = ica.copy()
    corrmap([ica, ica2], (0, 0), threshold='auto', label='blinks', plot=True,
            ch_type="mag")
    corrmap([ica, ica2], (0, 0), threshold=2, plot=False, show=False)
    assert (ica.labels_["blinks"] == ica2.labels_["blinks"])
    assert (0 in ica.labels_["blinks"])
    # test retrieval of component maps as arrays
    components = ica.get_components()
    template = components[:, 0]
    EvokedArray(components, ica.info, tmin=0.).plot_topomap([0], time_unit='s')

    corrmap([ica, ica3], template, threshold='auto', label='blinks', plot=True,
            ch_type="mag")
    assert (ica2.labels_["blinks"] == ica3.labels_["blinks"])

    plt.close('all')

    ica_different_channels = ICA(n_components=2, random_state=0).fit(
        raw, picks=[2, 3, 4, 5])
    pytest.raises(ValueError, corrmap, [ica_different_channels, ica], (0, 0))

    # test warnings on bad filenames
    ica_badname = op.join(op.dirname(tempdir), 'test-bad-name.fif.gz')
    with pytest.warns(RuntimeWarning, match='-ica.fif'):
        ica.save(ica_badname)
    with pytest.warns(RuntimeWarning, match='-ica.fif'):
        read_ica(ica_badname)

    # test decim
    ica = ICA(n_components=3, max_pca_components=4,
              n_pca_components=4, method=method, max_iter=1)
    raw_ = raw.copy()
    for _ in range(3):
        raw_.append(raw_)
    n_samples = raw_._data.shape[1]
    with pytest.warns(UserWarning, match='did not converge'):
        ica.fit(raw, picks=picks[:5], decim=3)
    assert raw_._data.shape[1] == n_samples

    # test expl var
    ica = ICA(n_components=1.0, max_pca_components=4,
              n_pca_components=4, method=method, max_iter=1)
    with pytest.warns(UserWarning, match='did not converge'):
        ica.fit(raw, picks=None, decim=3)
    assert (ica.n_components_ == 4)
    ica_var = _ica_explained_variance(ica, raw, normalize=True)
#.........这里部分代码省略.........
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:103,代码来源:test_ica.py

示例8: preprocess_ICA_fif_to_ts

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import exclude [as 别名]
def preprocess_ICA_fif_to_ts(fif_file, ECG_ch_name, EoG_ch_name, l_freq, h_freq, down_sfreq, variance, is_sensor_space, data_type):
    import os
    import numpy as np

    import mne
    from mne.io import Raw
    from mne.preprocessing import ICA, read_ica
    from mne.preprocessing import create_ecg_epochs, create_eog_epochs
    from mne.report import Report

    from nipype.utils.filemanip import split_filename as split_f

    report = Report()

    subj_path, basename, ext = split_f(fif_file)
    (data_path, sbj_name) = os.path.split(subj_path)
    print data_path

    # Read raw
    # If None the compensation in the data is not modified.
    # If set to n, e.g. 3, apply gradient compensation of grade n as for
    # CTF systems (compensation=3)
    raw = Raw(fif_file, preload=True)

    # select sensors
    select_sensors = mne.pick_types(raw.info, meg=True, ref_meg=False,
                                    exclude='bads')
    picks_meeg = mne.pick_types(raw.info, meg=True, eeg=True, exclude='bads')

    # save electrode locations
    sens_loc = [raw.info['chs'][i]['loc'][:3] for i in select_sensors]
    sens_loc = np.array(sens_loc)

    channel_coords_file = os.path.abspath("correct_channel_coords.txt")
    print '*** ' + channel_coords_file + '***'
    np.savetxt(channel_coords_file, sens_loc, fmt='%s')

    # save electrode names
    sens_names = np.array([raw.ch_names[pos] for pos in select_sensors],dtype = "str")

    # AP 21032016 
#    channel_names_file = os.path.join(data_path, "correct_channel_names.txt") 
    channel_names_file = os.path.abspath("correct_channel_names.txt")
    np.savetxt(channel_names_file,sens_names , fmt = '%s')
 
    ### filtering + downsampling
    raw.filter(l_freq=l_freq, h_freq=h_freq, picks=picks_meeg,
               method='iir', n_jobs=8)
#    raw.filter(l_freq = l_freq, h_freq = h_freq, picks = picks_meeg,
#               method='iir')
#    raw.resample(sfreq=down_sfreq, npad=0)

    ### 1) Fit ICA model using the FastICA algorithm
    # Other available choices are `infomax` or `extended-infomax`
    # We pass a float value between 0 and 1 to select n_components based on the
    # percentage of variance explained by the PCA components.
    ICA_title = 'Sources related to %s artifacts (red)'
    is_show = False # visualization
    reject = dict(mag=4e-12, grad=4000e-13)

    # check if we have an ICA, if yes, we load it
    ica_filename = os.path.join(subj_path,basename + "-ica.fif")  
    if os.path.exists(ica_filename) is False:
        ica = ICA(n_components=variance, method='fastica', max_iter=500) # , max_iter=500
        ica.fit(raw, picks=select_sensors, reject=reject) # decim = 3, 

        has_ICA = False
    else:
        has_ICA = True
        print ica_filename + '   exists!!!'
        ica = read_ica(ica_filename)
        ica.exclude = []

    # 2) identify bad components by analyzing latent sources.
    # generate ECG epochs use detection via phase statistics

    # if we just have exclude channels we jump these steps
#    if len(ica.exclude)==0:
    n_max_ecg = 3
    n_max_eog = 2

    # check if ECG_ch_name is in the raw channels
    if ECG_ch_name in raw.info['ch_names']:
        ecg_epochs = create_ecg_epochs(raw, tmin=-.5, tmax=.5,
                                       picks=select_sensors,
                                       ch_name=ECG_ch_name)
    # if not  a synthetic ECG channel is created from cross channel average
    else:
        ecg_epochs = create_ecg_epochs(raw, tmin=-.5, tmax=.5,
                                       picks=select_sensors)

    # ICA for ECG artifact
    # threshold=0.25 come default
    ecg_inds, scores = ica.find_bads_ecg(ecg_epochs, method='ctps')
    print scores
    print '\n len ecg_inds *** ' + str(len(ecg_inds)) + '***\n'
    if len(ecg_inds) > 0:
        ecg_evoked = ecg_epochs.average()

        fig1 = ica.plot_scores(scores, exclude=ecg_inds,
#.........这里部分代码省略.........
开发者ID:davidmeunier79,项目名称:neuropype_ephy,代码行数:103,代码来源:preproc.py

示例9: compute_ica

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import exclude [as 别名]
def compute_ica(raw, subject, n_components=0.99, picks=None, decim=None,
                reject=None, ecg_tmin=-0.5, ecg_tmax=0.5, eog_tmin=-0.5,
                eog_tmax=0.5, n_max_ecg=3, n_max_eog=1,
                n_max_ecg_epochs=200, show=True, img_scale=1.0,
                random_state=None, report=None, artifact_stats=None):
    """Run ICA in raw data

    Parameters
    ----------,
    raw : instance of Raw
        Raw measurements to be decomposed.
    subject : str
        The name of the subject.
    picks : array-like of int, shape(n_channels, ) | None
        Channels to be included. This selection remains throughout the
        initialized ICA solution. If None only good data channels are used.
        Defaults to None.
    n_components : int | float | None | 'rank'
        The number of components used for ICA decomposition. If int, it must be
        smaller then max_pca_components. If None, all PCA components will be
        used. If float between 0 and 1 components can will be selected by the
        cumulative percentage of explained variance.
        If 'rank', the number of components equals the rank estimate.
        Defaults to 0.99.
    decim : int | None
        Increment for selecting each nth time slice. If None, all samples
        within ``start`` and ``stop`` are used. Defalts to None.
    reject : dict | None
        Rejection parameters based on peak to peak amplitude.
        Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg'.
        If reject is None then no rejection is done. You should
        use such parameters to reject big measurement artifacts
        and not EOG for example. It only applies if `inst` is of type Raw.
        Defaults to {'mag': 5e-12}
    ecg_tmin : float
        Start time before ECG event. Defaults to -0.5.
    ecg_tmax : float
        End time after ECG event. Defaults to 0.5.
    eog_tmin : float
        Start time before rog event. Defaults to -0.5.
    eog_tmax : float
        End time after rog event. Defaults to 0.5.
    n_max_ecg : int | None
        The maximum number of ECG components to exclude. Defaults to 3.
    n_max_eog : int | None
        The maximum number of EOG components to exclude. Defaults to 1.
    n_max_ecg_epochs : int
        The maximum number of ECG epochs to use for phase-consistency
        estimation. Defaults to 200.
    show : bool
        Show figure if True
    scale_img : float
        The scaling factor for the report. Defaults to 1.0.
    random_state : None | int | instance of np.random.RandomState
        np.random.RandomState to initialize the FastICA estimation.
        As the estimation is non-deterministic it can be useful to
        fix the seed to have reproducible results. Defaults to None.
    report : instance of Report | None
        The report object. If None, a new report will be generated.
    artifact_stats : None | dict
        A dict that contains info on amplitude ranges of artifacts and
        numbers of events, etc. by channel type.

    Returns
    -------
    ica : instance of ICA
        The ICA solution.
    report : dict
        A dict with an html report ('html') and artifact statistics ('stats').
    """
    if report is None:
        report = Report(subject=subject, title='ICA preprocessing')
    if n_components == 'rank':
        n_components = raw.estimate_rank(picks=picks)
    ica = ICA(n_components=n_components, max_pca_components=None,
              random_state=random_state, max_iter=256)
    ica.fit(raw, picks=picks, decim=decim, reject=reject)

    comment = []
    for ch in ('mag', 'grad', 'eeg'):
        if ch in ica:
            comment += [ch.upper()]
    if len(comment) > 0:
        comment = '+'.join(comment) + ' '
    else:
        comment = ''

    topo_ch_type = 'mag'
    if 'GRAD' in comment and 'MAG' not in comment:
        topo_ch_type = 'grad'
    elif 'EEG' in comment:
        topo_ch_type = 'eeg'

    ###########################################################################
    # 2) identify bad components by analyzing latent sources.

    title = '%s related to %s artifacts (red) ({})'.format(subject)

    # generate ECG epochs use detection via phase statistics
    reject_ = {'mag': 5e-12, 'grad': 5000e-13, 'eeg': 300e-6}
#.........这里部分代码省略.........
开发者ID:christianbrodbeck,项目名称:meeg-preprocessing,代码行数:103,代码来源:preprocessing.py

示例10: test_ica_additional

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import exclude [as 别名]
def test_ica_additional():
    """Test additional functionality
    """
    stop2 = 500

    test_cov2 = deepcopy(test_cov)
    ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4,
              n_pca_components=4)
    ica.decompose_raw(raw, picks[:5])
    assert_true(ica.n_components_ < 5)

    ica = ICA(n_components=3, max_pca_components=4,
              n_pca_components=4)
    assert_raises(RuntimeError, ica.save, '')
    ica.decompose_raw(raw, picks=None, start=start, stop=stop2)

    # epochs extraction from raw fit
    assert_raises(RuntimeError, ica.get_sources_epochs, epochs)

    # test reading and writing
    test_ica_fname = op.join(op.dirname(tempdir), 'ica_test.fif')
    for cov in (None, test_cov):
        ica = ICA(noise_cov=cov, n_components=3, max_pca_components=4,
                  n_pca_components=4)
        ica.decompose_raw(raw, picks=picks, start=start, stop=stop2)
        sources = ica.get_sources_epochs(epochs)
        assert_true(sources.shape[1] == ica.n_components_)

        for exclude in [[], [0]]:
            ica.exclude = [0]
            ica.save(test_ica_fname)
            ica_read = read_ica(test_ica_fname)
            assert_true(ica.exclude == ica_read.exclude)
            # test pick merge -- add components
            ica.pick_sources_raw(raw, exclude=[1])
            assert_true(ica.exclude == [0, 1])
            #                 -- only as arg
            ica.exclude = []
            ica.pick_sources_raw(raw, exclude=[0, 1])
            assert_true(ica.exclude == [0, 1])
            #                 -- remove duplicates
            ica.exclude += [1]
            ica.pick_sources_raw(raw, exclude=[0, 1])
            assert_true(ica.exclude == [0, 1])

            ica_raw = ica.sources_as_raw(raw)
            assert_true(ica.exclude == [ica.ch_names.index(e) for e in
                                        ica_raw.info['bads']])

        ica.n_pca_components = 2
        ica.save(test_ica_fname)
        ica_read = read_ica(test_ica_fname)
        assert_true(ica.n_pca_components ==
                    ica_read.n_pca_components)
        ica.n_pca_components = 4
        ica_read.n_pca_components = 4

        ica.exclude = []
        ica.save(test_ica_fname)
        ica_read = read_ica(test_ica_fname)

        assert_true(ica.ch_names == ica_read.ch_names)

        assert_true(np.allclose(ica.mixing_matrix_, ica_read.mixing_matrix_,
                                rtol=1e-16, atol=1e-32))
        assert_array_equal(ica.pca_components_,
                           ica_read.pca_components_)
        assert_array_equal(ica.pca_mean_, ica_read.pca_mean_)
        assert_array_equal(ica.pca_explained_variance_,
                           ica_read.pca_explained_variance_)
        assert_array_equal(ica._pre_whitener, ica_read._pre_whitener)

        # assert_raises(RuntimeError, ica_read.decompose_raw, raw)
        sources = ica.get_sources_raw(raw)
        sources2 = ica_read.get_sources_raw(raw)
        assert_array_almost_equal(sources, sources2)

        _raw1 = ica.pick_sources_raw(raw, exclude=[1])
        _raw2 = ica_read.pick_sources_raw(raw, exclude=[1])
        assert_array_almost_equal(_raw1[:, :][0], _raw2[:, :][0])

    os.remove(test_ica_fname)
    # score funcs raw, with catch since "ties preclude exact" warning
    # XXX this should be fixed by a future PR...
    with warnings.catch_warnings(True) as w:
        sfunc_test = [ica.find_sources_raw(raw, target='EOG 061',
                score_func=n, start=0, stop=10)
                for n, f in score_funcs.items()]
    # score funcs raw

    # check lenght of scores
    [assert_true(ica.n_components_ == len(scores)) for scores in sfunc_test]

    # check univariate stats
    scores = ica.find_sources_raw(raw, score_func=stats.skew)
    # check exception handling
    assert_raises(ValueError, ica.find_sources_raw, raw,
                  target=np.arange(1))

    ## score funcs epochs ##
#.........这里部分代码省略.........
开发者ID:mshamalainen,项目名称:mne-python,代码行数:103,代码来源:test_ica.py

示例11: test_ica_additional

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import exclude [as 别名]
def test_ica_additional():
    """Test additional functionality
    """
    stop2 = 500

    test_cov2 = deepcopy(test_cov)
    ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4,
              n_pca_components=4)
    assert_true(ica.info is None)
    ica.decompose_raw(raw, picks[:5])
    assert_true(isinstance(ica.info, Info))
    assert_true(ica.n_components_ < 5)

    ica = ICA(n_components=3, max_pca_components=4,
              n_pca_components=4)
    assert_raises(RuntimeError, ica.save, '')
    ica.decompose_raw(raw, picks=None, start=start, stop=stop2)

    # epochs extraction from raw fit
    assert_raises(RuntimeError, ica.get_sources_epochs, epochs)

    # test reading and writing
    test_ica_fname = op.join(op.dirname(tempdir), 'ica_test.fif')
    for cov in (None, test_cov):
        ica = ICA(noise_cov=cov, n_components=3, max_pca_components=4,
                  n_pca_components=4)
        ica.decompose_raw(raw, picks=picks, start=start, stop=stop2)
        sources = ica.get_sources_epochs(epochs)
        assert_true(sources.shape[1] == ica.n_components_)

        for exclude in [[], [0]]:
            ica.exclude = [0]
            ica.save(test_ica_fname)
            ica_read = read_ica(test_ica_fname)
            assert_true(ica.exclude == ica_read.exclude)
            # test pick merge -- add components
            ica.pick_sources_raw(raw, exclude=[1])
            assert_true(ica.exclude == [0, 1])
            #                 -- only as arg
            ica.exclude = []
            ica.pick_sources_raw(raw, exclude=[0, 1])
            assert_true(ica.exclude == [0, 1])
            #                 -- remove duplicates
            ica.exclude += [1]
            ica.pick_sources_raw(raw, exclude=[0, 1])
            assert_true(ica.exclude == [0, 1])

            ica_raw = ica.sources_as_raw(raw)
            assert_true(ica.exclude == [ica_raw.ch_names.index(e) for e in
                                        ica_raw.info['bads']])

        ica.n_pca_components = 2
        ica.save(test_ica_fname)
        ica_read = read_ica(test_ica_fname)
        assert_true(ica.n_pca_components ==
                    ica_read.n_pca_components)
        ica.n_pca_components = 4
        ica_read.n_pca_components = 4

        ica.exclude = []
        ica.save(test_ica_fname)
        ica_read = read_ica(test_ica_fname)

        assert_true(ica.ch_names == ica_read.ch_names)
        assert_true(isinstance(ica_read.info, Info))  # XXX improve later
        assert_true(np.allclose(ica.mixing_matrix_, ica_read.mixing_matrix_,
                                rtol=1e-16, atol=1e-32))
        assert_array_equal(ica.pca_components_,
                           ica_read.pca_components_)
        assert_array_equal(ica.pca_mean_, ica_read.pca_mean_)
        assert_array_equal(ica.pca_explained_variance_,
                           ica_read.pca_explained_variance_)
        assert_array_equal(ica._pre_whitener, ica_read._pre_whitener)

        # assert_raises(RuntimeError, ica_read.decompose_raw, raw)
        sources = ica.get_sources_raw(raw)
        sources2 = ica_read.get_sources_raw(raw)
        assert_array_almost_equal(sources, sources2)

        _raw1 = ica.pick_sources_raw(raw, exclude=[1])
        _raw2 = ica_read.pick_sources_raw(raw, exclude=[1])
        assert_array_almost_equal(_raw1[:, :][0], _raw2[:, :][0])

    os.remove(test_ica_fname)
    # check scrore funcs
    for name, func in score_funcs.items():
        if name in score_funcs_unsuited:
            continue
        scores = ica.find_sources_raw(raw, target='EOG 061', score_func=func,
                                      start=0, stop=10)
        assert_true(ica.n_components_ == len(scores))

    # check univariate stats
    scores = ica.find_sources_raw(raw, score_func=stats.skew)
    # check exception handling
    assert_raises(ValueError, ica.find_sources_raw, raw,
                  target=np.arange(1))

    params = []
    params += [(None, -1, slice(2), [0, 1])]  # varicance, kurtosis idx params
#.........这里部分代码省略.........
开发者ID:pauldelprato,项目名称:mne-python,代码行数:103,代码来源:test_ica.py


注:本文中的mne.preprocessing.ICA.exclude方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。