本文整理汇总了Python中mne.preprocessing.ICA.exclude方法的典型用法代码示例。如果您正苦于以下问题:Python ICA.exclude方法的具体用法?Python ICA.exclude怎么用?Python ICA.exclude使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mne.preprocessing.ICA
的用法示例。
在下文中一共展示了ICA.exclude方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_plot_ica_sources
# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import exclude [as 别名]
def test_plot_ica_sources():
"""Test plotting of ICA panel."""
raw = read_raw_fif(raw_fname).crop(0, 1).load_data()
picks = _get_picks(raw)
epochs = _get_epochs()
raw.pick_channels([raw.ch_names[k] for k in picks])
ica_picks = pick_types(raw.info, meg=True, eeg=False, stim=False,
ecg=False, eog=False, exclude='bads')
ica = ICA(n_components=2, max_pca_components=3, n_pca_components=3)
ica.fit(raw, picks=ica_picks)
ica.exclude = [1]
fig = ica.plot_sources(raw)
fig.canvas.key_press_event('escape')
# Sadly close_event isn't called on Agg backend and the test always passes.
assert_array_equal(ica.exclude, [1])
plt.close('all')
# dtype can change int->np.int after load, test it explicitly
ica.n_components_ = np.int64(ica.n_components_)
fig = ica.plot_sources(raw, [1])
# also test mouse clicks
data_ax = fig.axes[0]
_fake_click(fig, data_ax, [-0.1, 0.9]) # click on y-label
raw.info['bads'] = ['MEG 0113']
pytest.raises(RuntimeError, ica.plot_sources, inst=raw)
ica.plot_sources(epochs)
epochs.info['bads'] = ['MEG 0113']
pytest.raises(RuntimeError, ica.plot_sources, inst=epochs)
epochs.info['bads'] = []
ica.plot_sources(epochs.average())
evoked = epochs.average()
fig = ica.plot_sources(evoked)
# Test a click
ax = fig.get_axes()[0]
line = ax.lines[0]
_fake_click(fig, ax,
[line.get_xdata()[0], line.get_ydata()[0]], 'data')
_fake_click(fig, ax,
[ax.get_xlim()[0], ax.get_ylim()[1]], 'data')
# plot with bad channels excluded
ica.plot_sources(evoked, exclude=[0])
ica.exclude = [0]
ica.plot_sources(evoked) # does the same thing
ica.labels_ = dict(eog=[0])
ica.labels_['eog/0/crazy-channel'] = [0]
ica.plot_sources(evoked) # now with labels
pytest.raises(ValueError, ica.plot_sources, 'meeow')
plt.close('all')
示例2: test_plot_ica_sources
# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import exclude [as 别名]
def test_plot_ica_sources():
"""Test plotting of ICA panel
"""
import matplotlib.pyplot as plt
raw = io.read_raw_fif(raw_fname,
preload=False).crop(0, 1, copy=False).load_data()
picks = _get_picks(raw)
epochs = _get_epochs()
raw.pick_channels([raw.ch_names[k] for k in picks])
ica_picks = pick_types(raw.info, meg=True, eeg=False, stim=False,
ecg=False, eog=False, exclude='bads')
ica = ICA(n_components=2, max_pca_components=3, n_pca_components=3)
ica.fit(raw, picks=ica_picks)
ica.exclude = [1]
fig = ica.plot_sources(raw)
fig.canvas.key_press_event('escape')
# Sadly close_event isn't called on Agg backend and the test always passes.
assert_array_equal(ica.exclude, [1])
raw.info['bads'] = ['MEG 0113']
assert_raises(RuntimeError, ica.plot_sources, inst=raw)
ica.plot_sources(epochs)
epochs.info['bads'] = ['MEG 0113']
assert_raises(RuntimeError, ica.plot_sources, inst=epochs)
epochs.info['bads'] = []
with warnings.catch_warnings(record=True): # no labeled objects mpl
ica.plot_sources(epochs.average())
evoked = epochs.average()
fig = ica.plot_sources(evoked)
# Test a click
ax = fig.get_axes()[0]
line = ax.lines[0]
_fake_click(fig, ax,
[line.get_xdata()[0], line.get_ydata()[0]], 'data')
_fake_click(fig, ax,
[ax.get_xlim()[0], ax.get_ylim()[1]], 'data')
# plot with bad channels excluded
ica.plot_sources(evoked, exclude=[0])
ica.exclude = [0]
ica.plot_sources(evoked) # does the same thing
ica.labels_ = dict(eog=[0])
ica.labels_['eog/0/crazy-channel'] = [0]
ica.plot_sources(evoked) # now with labels
assert_raises(ValueError, ica.plot_sources, 'meeow')
plt.close('all')
示例3: test_plot_ica_sources
# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import exclude [as 别名]
def test_plot_ica_sources():
"""Test plotting of ICA panel
"""
import matplotlib.pyplot as plt
raw = io.Raw(raw_fname, preload=False)
raw.crop(0, 1, copy=False)
raw.preload_data()
picks = _get_picks(raw)
epochs = _get_epochs()
raw.pick_channels([raw.ch_names[k] for k in picks])
ica_picks = pick_types(raw.info, meg=True, eeg=False, stim=False,
ecg=False, eog=False, exclude='bads')
ica = ICA(n_components=2, max_pca_components=3, n_pca_components=3)
ica.fit(raw, picks=ica_picks)
raw.info['bads'] = ['MEG 0113']
assert_raises(RuntimeError, ica.plot_sources, inst=raw)
ica.plot_sources(epochs)
epochs.info['bads'] = ['MEG 0113']
assert_raises(RuntimeError, ica.plot_sources, inst=epochs)
epochs.info['bads'] = []
with warnings.catch_warnings(record=True): # no labeled objects mpl
ica.plot_sources(epochs.average())
evoked = epochs.average()
fig = ica.plot_sources(evoked)
# Test a click
ax = fig.get_axes()[0]
line = ax.lines[0]
_fake_click(fig, ax,
[line.get_xdata()[0], line.get_ydata()[0]], 'data')
_fake_click(fig, ax,
[ax.get_xlim()[0], ax.get_ylim()[1]], 'data')
# plot with bad channels excluded
ica.plot_sources(evoked, exclude=[0])
ica.exclude = [0]
ica.plot_sources(evoked) # does the same thing
assert_raises(ValueError, ica.plot_sources, 'meeow')
plt.close('all')
示例4: test_ica_additional
# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import exclude [as 别名]
def test_ica_additional():
"""Test additional ICA functionality"""
tempdir = _TempDir()
stop2 = 500
raw = Raw(raw_fname).crop(1.5, stop, False)
raw.load_data()
picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
eog=False, exclude='bads')
test_cov = read_cov(test_cov_name)
events = read_events(event_name)
picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
eog=False, exclude='bads')
epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks,
baseline=(None, 0), preload=True)
# test if n_components=None works
with warnings.catch_warnings(record=True):
ica = ICA(n_components=None,
max_pca_components=None,
n_pca_components=None, random_state=0)
ica.fit(epochs, picks=picks, decim=3)
# for testing eog functionality
picks2 = pick_types(raw.info, meg=True, stim=False, ecg=False,
eog=True, exclude='bads')
epochs_eog = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks2,
baseline=(None, 0), preload=True)
test_cov2 = test_cov.copy()
ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4,
n_pca_components=4)
assert_true(ica.info is None)
with warnings.catch_warnings(record=True):
ica.fit(raw, picks[:5])
assert_true(isinstance(ica.info, Info))
assert_true(ica.n_components_ < 5)
ica = ICA(n_components=3, max_pca_components=4,
n_pca_components=4)
assert_raises(RuntimeError, ica.save, '')
with warnings.catch_warnings(record=True):
ica.fit(raw, picks=[1, 2, 3, 4, 5], start=start, stop=stop2)
# test corrmap
ica2 = ica.copy()
corrmap([ica, ica2], (0, 0), threshold='auto', label='blinks', plot=True,
ch_type="mag")
corrmap([ica, ica2], (0, 0), threshold=2, plot=False, show=False)
assert_true(ica.labels_["blinks"] == ica2.labels_["blinks"])
assert_true(0 in ica.labels_["blinks"])
plt.close('all')
# test warnings on bad filenames
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
ica_badname = op.join(op.dirname(tempdir), 'test-bad-name.fif.gz')
ica.save(ica_badname)
read_ica(ica_badname)
assert_naming(w, 'test_ica.py', 2)
# test decim
ica = ICA(n_components=3, max_pca_components=4,
n_pca_components=4)
raw_ = raw.copy()
for _ in range(3):
raw_.append(raw_)
n_samples = raw_._data.shape[1]
with warnings.catch_warnings(record=True):
ica.fit(raw, picks=None, decim=3)
assert_true(raw_._data.shape[1], n_samples)
# test expl var
ica = ICA(n_components=1.0, max_pca_components=4,
n_pca_components=4)
with warnings.catch_warnings(record=True):
ica.fit(raw, picks=None, decim=3)
assert_true(ica.n_components_ == 4)
# epochs extraction from raw fit
assert_raises(RuntimeError, ica.get_sources, epochs)
# test reading and writing
test_ica_fname = op.join(op.dirname(tempdir), 'test-ica.fif')
for cov in (None, test_cov):
ica = ICA(noise_cov=cov, n_components=2, max_pca_components=4,
n_pca_components=4)
with warnings.catch_warnings(record=True): # ICA does not converge
ica.fit(raw, picks=picks, start=start, stop=stop2)
sources = ica.get_sources(epochs).get_data()
assert_true(ica.mixing_matrix_.shape == (2, 2))
assert_true(ica.unmixing_matrix_.shape == (2, 2))
assert_true(ica.pca_components_.shape == (4, len(picks)))
assert_true(sources.shape[1] == ica.n_components_)
for exclude in [[], [0]]:
ica.exclude = [0]
ica.labels_ = {'foo': [0]}
ica.save(test_ica_fname)
ica_read = read_ica(test_ica_fname)
assert_true(ica.exclude == ica_read.exclude)
assert_equal(ica.labels_, ica_read.labels_)
ica.exclude = []
ica.apply(raw, exclude=[1])
#.........这里部分代码省略.........
示例5: test_ica_additional
# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import exclude [as 别名]
def test_ica_additional():
"""Test additional ICA functionality
"""
stop2 = 500
raw = io.Raw(raw_fname, preload=True).crop(0, stop, False).crop(1.5)
picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
eog=False, exclude='bads')
test_cov = read_cov(test_cov_name)
events = read_events(event_name)
picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
eog=False, exclude='bads')
epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks,
baseline=(None, 0), preload=True)
# for testing eog functionality
picks2 = pick_types(raw.info, meg=True, stim=False, ecg=False,
eog=True, exclude='bads')
epochs_eog = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks2,
baseline=(None, 0), preload=True)
test_cov2 = deepcopy(test_cov)
ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4,
n_pca_components=4)
assert_true(ica.info is None)
ica.decompose_raw(raw, picks[:5])
assert_true(isinstance(ica.info, Info))
assert_true(ica.n_components_ < 5)
ica = ICA(n_components=3, max_pca_components=4,
n_pca_components=4)
assert_raises(RuntimeError, ica.save, '')
ica.decompose_raw(raw, picks=None, start=start, stop=stop2)
# test warnings on bad filenames
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
ica_badname = op.join(op.dirname(tempdir), 'test-bad-name.fif.gz')
ica.save(ica_badname)
read_ica(ica_badname)
assert_true(len(w) == 2)
# test decim
ica = ICA(n_components=3, max_pca_components=4,
n_pca_components=4)
raw_ = raw.copy()
for _ in range(3):
raw_.append(raw_)
n_samples = raw_._data.shape[1]
ica.decompose_raw(raw, picks=None, decim=3)
assert_true(raw_._data.shape[1], n_samples)
# test expl var
ica = ICA(n_components=1.0, max_pca_components=4,
n_pca_components=4)
ica.decompose_raw(raw, picks=None, decim=3)
assert_true(ica.n_components_ == 4)
# epochs extraction from raw fit
assert_raises(RuntimeError, ica.get_sources_epochs, epochs)
# test reading and writing
test_ica_fname = op.join(op.dirname(tempdir), 'test-ica.fif')
for cov in (None, test_cov):
ica = ICA(noise_cov=cov, n_components=2, max_pca_components=4,
n_pca_components=4)
with warnings.catch_warnings(record=True): # ICA does not converge
ica.decompose_raw(raw, picks=picks, start=start, stop=stop2)
sources = ica.get_sources_epochs(epochs)
assert_true(ica.mixing_matrix_.shape == (2, 2))
assert_true(ica.unmixing_matrix_.shape == (2, 2))
assert_true(ica.pca_components_.shape == (4, len(picks)))
assert_true(sources.shape[1] == ica.n_components_)
for exclude in [[], [0]]:
ica.exclude = [0]
ica.save(test_ica_fname)
ica_read = read_ica(test_ica_fname)
assert_true(ica.exclude == ica_read.exclude)
# test pick merge -- add components
ica.pick_sources_raw(raw, exclude=[1])
assert_true(ica.exclude == [0, 1])
# -- only as arg
ica.exclude = []
ica.pick_sources_raw(raw, exclude=[0, 1])
assert_true(ica.exclude == [0, 1])
# -- remove duplicates
ica.exclude += [1]
ica.pick_sources_raw(raw, exclude=[0, 1])
assert_true(ica.exclude == [0, 1])
# test basic include
ica.exclude = []
ica.pick_sources_raw(raw, include=[1])
ica_raw = ica.sources_as_raw(raw)
assert_true(ica.exclude == [ica_raw.ch_names.index(e) for e in
ica_raw.info['bads']])
# test filtering
d1 = ica_raw._data[0].copy()
with warnings.catch_warnings(record=True): # dB warning
ica_raw.filter(4, 20)
#.........这里部分代码省略.........
示例6: create_eog_epochs
# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import exclude [as 别名]
# estimate average artifact
ecg_evoked = ecg_epochs.average()
fig = ica.plot_sources(ecg_evoked, exclude=ecg_inds) # plot ECG sources + selection
fig.savefig(img_folder + '/ica_ecg_evoked_sources.png')
fig = ica.plot_overlay(ecg_evoked, exclude=ecg_inds) # plot ECG cleaning
fig.savefig(img_folder + '/ica_ecg_evoked_overlay.png')
#eog_evoked = create_eog_epochs(raw, tmin=-.5, tmax=.5, picks=picks).average()
#fig = ica.plot_sources(eog_evoked, exclude=eog_inds) # plot EOG sources + selection
#fig.savefig(img_folder + '/ica_eog_evoked_sources.png')
#fig = ica.plot_overlay(eog_evoked, exclude=eog_inds) # plot EOG cleaning
#fig.savefig(img_folder + '/ica_eog_evoked_overlay.png')
tmp=ica.exclude
ica.exclude = []
veog_evoked = create_eog_epochs(raw, ch_name='EOG001', tmin=-.5, tmax=.5, picks=picks).average()
fig = ica.plot_sources(veog_evoked, exclude=veog_inds) # plot EOG sources + selection
fig.savefig(img_folder + '/ica_veog_evoked_sources_veog_inds.png')
fig = ica.plot_overlay(veog_evoked, exclude=veog_inds) # plot EOG cleaning
fig.savefig(img_folder + '/ica_veog_evoked_overlay_veog_inds.png')
fig = ica.plot_sources(veog_evoked, exclude=heog_inds) # plot EOG sources + selection
fig.savefig(img_folder + '/ica_veog_evoked_sources_heog_inds.png')
fig = ica.plot_overlay(veog_evoked, exclude=heog_inds) # plot EOG cleaning
fig.savefig(img_folder + '/ica_veog_evoked_overlay_heog_inds.png')
fig = ica.plot_sources(veog_evoked, exclude=eog_inds) # plot EOG sources + selection
fig.savefig(img_folder + '/ica_veog_evoked_sources_eog_inds.png')
fig = ica.plot_overlay(veog_evoked, exclude=eog_inds) # plot EOG cleaning
fig.savefig(img_folder + '/ica_veog_evoked_overlay_eog_inds.png')
heog_evoked = create_eog_epochs(raw, ch_name='EOG003', tmin=-.5, tmax=.5, picks=picks).average()
示例7: test_ica_additional
# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import exclude [as 别名]
def test_ica_additional(method):
"""Test additional ICA functionality."""
_skip_check_picard(method)
tempdir = _TempDir()
stop2 = 500
raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data()
raw.del_proj() # avoid warnings
raw.set_annotations(Annotations([0.5], [0.5], ['BAD']))
# XXX This breaks the tests :(
# raw.info['bads'] = [raw.ch_names[1]]
test_cov = read_cov(test_cov_name)
events = read_events(event_name)
picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
eog=False, exclude='bads')[1::2]
epochs = Epochs(raw, events, None, tmin, tmax, picks=picks,
baseline=(None, 0), preload=True, proj=False)
epochs.decimate(3, verbose='error')
assert len(epochs) == 4
# test if n_components=None works
ica = ICA(n_components=None, max_pca_components=None,
n_pca_components=None, random_state=0, method=method, max_iter=1)
with pytest.warns(UserWarning, match='did not converge'):
ica.fit(epochs)
# for testing eog functionality
picks2 = np.concatenate([picks, pick_types(raw.info, False, eog=True)])
epochs_eog = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks2,
baseline=(None, 0), preload=True)
del picks2
test_cov2 = test_cov.copy()
ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4,
n_pca_components=4, method=method)
assert (ica.info is None)
with pytest.warns(RuntimeWarning, match='normalize_proj'):
ica.fit(raw, picks[:5])
assert (isinstance(ica.info, Info))
assert (ica.n_components_ < 5)
ica = ICA(n_components=3, max_pca_components=4, method=method,
n_pca_components=4, random_state=0)
pytest.raises(RuntimeError, ica.save, '')
ica.fit(raw, picks=[1, 2, 3, 4, 5], start=start, stop=stop2)
# check passing a ch_name to find_bads_ecg
with pytest.warns(RuntimeWarning, match='longer'):
_, scores_1 = ica.find_bads_ecg(raw)
_, scores_2 = ica.find_bads_ecg(raw, raw.ch_names[1])
assert scores_1[0] != scores_2[0]
# test corrmap
ica2 = ica.copy()
ica3 = ica.copy()
corrmap([ica, ica2], (0, 0), threshold='auto', label='blinks', plot=True,
ch_type="mag")
corrmap([ica, ica2], (0, 0), threshold=2, plot=False, show=False)
assert (ica.labels_["blinks"] == ica2.labels_["blinks"])
assert (0 in ica.labels_["blinks"])
# test retrieval of component maps as arrays
components = ica.get_components()
template = components[:, 0]
EvokedArray(components, ica.info, tmin=0.).plot_topomap([0], time_unit='s')
corrmap([ica, ica3], template, threshold='auto', label='blinks', plot=True,
ch_type="mag")
assert (ica2.labels_["blinks"] == ica3.labels_["blinks"])
plt.close('all')
ica_different_channels = ICA(n_components=2, random_state=0).fit(
raw, picks=[2, 3, 4, 5])
pytest.raises(ValueError, corrmap, [ica_different_channels, ica], (0, 0))
# test warnings on bad filenames
ica_badname = op.join(op.dirname(tempdir), 'test-bad-name.fif.gz')
with pytest.warns(RuntimeWarning, match='-ica.fif'):
ica.save(ica_badname)
with pytest.warns(RuntimeWarning, match='-ica.fif'):
read_ica(ica_badname)
# test decim
ica = ICA(n_components=3, max_pca_components=4,
n_pca_components=4, method=method, max_iter=1)
raw_ = raw.copy()
for _ in range(3):
raw_.append(raw_)
n_samples = raw_._data.shape[1]
with pytest.warns(UserWarning, match='did not converge'):
ica.fit(raw, picks=picks[:5], decim=3)
assert raw_._data.shape[1] == n_samples
# test expl var
ica = ICA(n_components=1.0, max_pca_components=4,
n_pca_components=4, method=method, max_iter=1)
with pytest.warns(UserWarning, match='did not converge'):
ica.fit(raw, picks=None, decim=3)
assert (ica.n_components_ == 4)
ica_var = _ica_explained_variance(ica, raw, normalize=True)
#.........这里部分代码省略.........
示例8: preprocess_ICA_fif_to_ts
# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import exclude [as 别名]
def preprocess_ICA_fif_to_ts(fif_file, ECG_ch_name, EoG_ch_name, l_freq, h_freq, down_sfreq, variance, is_sensor_space, data_type):
import os
import numpy as np
import mne
from mne.io import Raw
from mne.preprocessing import ICA, read_ica
from mne.preprocessing import create_ecg_epochs, create_eog_epochs
from mne.report import Report
from nipype.utils.filemanip import split_filename as split_f
report = Report()
subj_path, basename, ext = split_f(fif_file)
(data_path, sbj_name) = os.path.split(subj_path)
print data_path
# Read raw
# If None the compensation in the data is not modified.
# If set to n, e.g. 3, apply gradient compensation of grade n as for
# CTF systems (compensation=3)
raw = Raw(fif_file, preload=True)
# select sensors
select_sensors = mne.pick_types(raw.info, meg=True, ref_meg=False,
exclude='bads')
picks_meeg = mne.pick_types(raw.info, meg=True, eeg=True, exclude='bads')
# save electrode locations
sens_loc = [raw.info['chs'][i]['loc'][:3] for i in select_sensors]
sens_loc = np.array(sens_loc)
channel_coords_file = os.path.abspath("correct_channel_coords.txt")
print '*** ' + channel_coords_file + '***'
np.savetxt(channel_coords_file, sens_loc, fmt='%s')
# save electrode names
sens_names = np.array([raw.ch_names[pos] for pos in select_sensors],dtype = "str")
# AP 21032016
# channel_names_file = os.path.join(data_path, "correct_channel_names.txt")
channel_names_file = os.path.abspath("correct_channel_names.txt")
np.savetxt(channel_names_file,sens_names , fmt = '%s')
### filtering + downsampling
raw.filter(l_freq=l_freq, h_freq=h_freq, picks=picks_meeg,
method='iir', n_jobs=8)
# raw.filter(l_freq = l_freq, h_freq = h_freq, picks = picks_meeg,
# method='iir')
# raw.resample(sfreq=down_sfreq, npad=0)
### 1) Fit ICA model using the FastICA algorithm
# Other available choices are `infomax` or `extended-infomax`
# We pass a float value between 0 and 1 to select n_components based on the
# percentage of variance explained by the PCA components.
ICA_title = 'Sources related to %s artifacts (red)'
is_show = False # visualization
reject = dict(mag=4e-12, grad=4000e-13)
# check if we have an ICA, if yes, we load it
ica_filename = os.path.join(subj_path,basename + "-ica.fif")
if os.path.exists(ica_filename) is False:
ica = ICA(n_components=variance, method='fastica', max_iter=500) # , max_iter=500
ica.fit(raw, picks=select_sensors, reject=reject) # decim = 3,
has_ICA = False
else:
has_ICA = True
print ica_filename + ' exists!!!'
ica = read_ica(ica_filename)
ica.exclude = []
# 2) identify bad components by analyzing latent sources.
# generate ECG epochs use detection via phase statistics
# if we just have exclude channels we jump these steps
# if len(ica.exclude)==0:
n_max_ecg = 3
n_max_eog = 2
# check if ECG_ch_name is in the raw channels
if ECG_ch_name in raw.info['ch_names']:
ecg_epochs = create_ecg_epochs(raw, tmin=-.5, tmax=.5,
picks=select_sensors,
ch_name=ECG_ch_name)
# if not a synthetic ECG channel is created from cross channel average
else:
ecg_epochs = create_ecg_epochs(raw, tmin=-.5, tmax=.5,
picks=select_sensors)
# ICA for ECG artifact
# threshold=0.25 come default
ecg_inds, scores = ica.find_bads_ecg(ecg_epochs, method='ctps')
print scores
print '\n len ecg_inds *** ' + str(len(ecg_inds)) + '***\n'
if len(ecg_inds) > 0:
ecg_evoked = ecg_epochs.average()
fig1 = ica.plot_scores(scores, exclude=ecg_inds,
#.........这里部分代码省略.........
示例9: compute_ica
# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import exclude [as 别名]
def compute_ica(raw, subject, n_components=0.99, picks=None, decim=None,
reject=None, ecg_tmin=-0.5, ecg_tmax=0.5, eog_tmin=-0.5,
eog_tmax=0.5, n_max_ecg=3, n_max_eog=1,
n_max_ecg_epochs=200, show=True, img_scale=1.0,
random_state=None, report=None, artifact_stats=None):
"""Run ICA in raw data
Parameters
----------,
raw : instance of Raw
Raw measurements to be decomposed.
subject : str
The name of the subject.
picks : array-like of int, shape(n_channels, ) | None
Channels to be included. This selection remains throughout the
initialized ICA solution. If None only good data channels are used.
Defaults to None.
n_components : int | float | None | 'rank'
The number of components used for ICA decomposition. If int, it must be
smaller then max_pca_components. If None, all PCA components will be
used. If float between 0 and 1 components can will be selected by the
cumulative percentage of explained variance.
If 'rank', the number of components equals the rank estimate.
Defaults to 0.99.
decim : int | None
Increment for selecting each nth time slice. If None, all samples
within ``start`` and ``stop`` are used. Defalts to None.
reject : dict | None
Rejection parameters based on peak to peak amplitude.
Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg'.
If reject is None then no rejection is done. You should
use such parameters to reject big measurement artifacts
and not EOG for example. It only applies if `inst` is of type Raw.
Defaults to {'mag': 5e-12}
ecg_tmin : float
Start time before ECG event. Defaults to -0.5.
ecg_tmax : float
End time after ECG event. Defaults to 0.5.
eog_tmin : float
Start time before rog event. Defaults to -0.5.
eog_tmax : float
End time after rog event. Defaults to 0.5.
n_max_ecg : int | None
The maximum number of ECG components to exclude. Defaults to 3.
n_max_eog : int | None
The maximum number of EOG components to exclude. Defaults to 1.
n_max_ecg_epochs : int
The maximum number of ECG epochs to use for phase-consistency
estimation. Defaults to 200.
show : bool
Show figure if True
scale_img : float
The scaling factor for the report. Defaults to 1.0.
random_state : None | int | instance of np.random.RandomState
np.random.RandomState to initialize the FastICA estimation.
As the estimation is non-deterministic it can be useful to
fix the seed to have reproducible results. Defaults to None.
report : instance of Report | None
The report object. If None, a new report will be generated.
artifact_stats : None | dict
A dict that contains info on amplitude ranges of artifacts and
numbers of events, etc. by channel type.
Returns
-------
ica : instance of ICA
The ICA solution.
report : dict
A dict with an html report ('html') and artifact statistics ('stats').
"""
if report is None:
report = Report(subject=subject, title='ICA preprocessing')
if n_components == 'rank':
n_components = raw.estimate_rank(picks=picks)
ica = ICA(n_components=n_components, max_pca_components=None,
random_state=random_state, max_iter=256)
ica.fit(raw, picks=picks, decim=decim, reject=reject)
comment = []
for ch in ('mag', 'grad', 'eeg'):
if ch in ica:
comment += [ch.upper()]
if len(comment) > 0:
comment = '+'.join(comment) + ' '
else:
comment = ''
topo_ch_type = 'mag'
if 'GRAD' in comment and 'MAG' not in comment:
topo_ch_type = 'grad'
elif 'EEG' in comment:
topo_ch_type = 'eeg'
###########################################################################
# 2) identify bad components by analyzing latent sources.
title = '%s related to %s artifacts (red) ({})'.format(subject)
# generate ECG epochs use detection via phase statistics
reject_ = {'mag': 5e-12, 'grad': 5000e-13, 'eeg': 300e-6}
#.........这里部分代码省略.........
示例10: test_ica_additional
# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import exclude [as 别名]
def test_ica_additional():
"""Test additional functionality
"""
stop2 = 500
test_cov2 = deepcopy(test_cov)
ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4,
n_pca_components=4)
ica.decompose_raw(raw, picks[:5])
assert_true(ica.n_components_ < 5)
ica = ICA(n_components=3, max_pca_components=4,
n_pca_components=4)
assert_raises(RuntimeError, ica.save, '')
ica.decompose_raw(raw, picks=None, start=start, stop=stop2)
# epochs extraction from raw fit
assert_raises(RuntimeError, ica.get_sources_epochs, epochs)
# test reading and writing
test_ica_fname = op.join(op.dirname(tempdir), 'ica_test.fif')
for cov in (None, test_cov):
ica = ICA(noise_cov=cov, n_components=3, max_pca_components=4,
n_pca_components=4)
ica.decompose_raw(raw, picks=picks, start=start, stop=stop2)
sources = ica.get_sources_epochs(epochs)
assert_true(sources.shape[1] == ica.n_components_)
for exclude in [[], [0]]:
ica.exclude = [0]
ica.save(test_ica_fname)
ica_read = read_ica(test_ica_fname)
assert_true(ica.exclude == ica_read.exclude)
# test pick merge -- add components
ica.pick_sources_raw(raw, exclude=[1])
assert_true(ica.exclude == [0, 1])
# -- only as arg
ica.exclude = []
ica.pick_sources_raw(raw, exclude=[0, 1])
assert_true(ica.exclude == [0, 1])
# -- remove duplicates
ica.exclude += [1]
ica.pick_sources_raw(raw, exclude=[0, 1])
assert_true(ica.exclude == [0, 1])
ica_raw = ica.sources_as_raw(raw)
assert_true(ica.exclude == [ica.ch_names.index(e) for e in
ica_raw.info['bads']])
ica.n_pca_components = 2
ica.save(test_ica_fname)
ica_read = read_ica(test_ica_fname)
assert_true(ica.n_pca_components ==
ica_read.n_pca_components)
ica.n_pca_components = 4
ica_read.n_pca_components = 4
ica.exclude = []
ica.save(test_ica_fname)
ica_read = read_ica(test_ica_fname)
assert_true(ica.ch_names == ica_read.ch_names)
assert_true(np.allclose(ica.mixing_matrix_, ica_read.mixing_matrix_,
rtol=1e-16, atol=1e-32))
assert_array_equal(ica.pca_components_,
ica_read.pca_components_)
assert_array_equal(ica.pca_mean_, ica_read.pca_mean_)
assert_array_equal(ica.pca_explained_variance_,
ica_read.pca_explained_variance_)
assert_array_equal(ica._pre_whitener, ica_read._pre_whitener)
# assert_raises(RuntimeError, ica_read.decompose_raw, raw)
sources = ica.get_sources_raw(raw)
sources2 = ica_read.get_sources_raw(raw)
assert_array_almost_equal(sources, sources2)
_raw1 = ica.pick_sources_raw(raw, exclude=[1])
_raw2 = ica_read.pick_sources_raw(raw, exclude=[1])
assert_array_almost_equal(_raw1[:, :][0], _raw2[:, :][0])
os.remove(test_ica_fname)
# score funcs raw, with catch since "ties preclude exact" warning
# XXX this should be fixed by a future PR...
with warnings.catch_warnings(True) as w:
sfunc_test = [ica.find_sources_raw(raw, target='EOG 061',
score_func=n, start=0, stop=10)
for n, f in score_funcs.items()]
# score funcs raw
# check lenght of scores
[assert_true(ica.n_components_ == len(scores)) for scores in sfunc_test]
# check univariate stats
scores = ica.find_sources_raw(raw, score_func=stats.skew)
# check exception handling
assert_raises(ValueError, ica.find_sources_raw, raw,
target=np.arange(1))
## score funcs epochs ##
#.........这里部分代码省略.........
示例11: test_ica_additional
# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import exclude [as 别名]
def test_ica_additional():
"""Test additional functionality
"""
stop2 = 500
test_cov2 = deepcopy(test_cov)
ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4,
n_pca_components=4)
assert_true(ica.info is None)
ica.decompose_raw(raw, picks[:5])
assert_true(isinstance(ica.info, Info))
assert_true(ica.n_components_ < 5)
ica = ICA(n_components=3, max_pca_components=4,
n_pca_components=4)
assert_raises(RuntimeError, ica.save, '')
ica.decompose_raw(raw, picks=None, start=start, stop=stop2)
# epochs extraction from raw fit
assert_raises(RuntimeError, ica.get_sources_epochs, epochs)
# test reading and writing
test_ica_fname = op.join(op.dirname(tempdir), 'ica_test.fif')
for cov in (None, test_cov):
ica = ICA(noise_cov=cov, n_components=3, max_pca_components=4,
n_pca_components=4)
ica.decompose_raw(raw, picks=picks, start=start, stop=stop2)
sources = ica.get_sources_epochs(epochs)
assert_true(sources.shape[1] == ica.n_components_)
for exclude in [[], [0]]:
ica.exclude = [0]
ica.save(test_ica_fname)
ica_read = read_ica(test_ica_fname)
assert_true(ica.exclude == ica_read.exclude)
# test pick merge -- add components
ica.pick_sources_raw(raw, exclude=[1])
assert_true(ica.exclude == [0, 1])
# -- only as arg
ica.exclude = []
ica.pick_sources_raw(raw, exclude=[0, 1])
assert_true(ica.exclude == [0, 1])
# -- remove duplicates
ica.exclude += [1]
ica.pick_sources_raw(raw, exclude=[0, 1])
assert_true(ica.exclude == [0, 1])
ica_raw = ica.sources_as_raw(raw)
assert_true(ica.exclude == [ica_raw.ch_names.index(e) for e in
ica_raw.info['bads']])
ica.n_pca_components = 2
ica.save(test_ica_fname)
ica_read = read_ica(test_ica_fname)
assert_true(ica.n_pca_components ==
ica_read.n_pca_components)
ica.n_pca_components = 4
ica_read.n_pca_components = 4
ica.exclude = []
ica.save(test_ica_fname)
ica_read = read_ica(test_ica_fname)
assert_true(ica.ch_names == ica_read.ch_names)
assert_true(isinstance(ica_read.info, Info)) # XXX improve later
assert_true(np.allclose(ica.mixing_matrix_, ica_read.mixing_matrix_,
rtol=1e-16, atol=1e-32))
assert_array_equal(ica.pca_components_,
ica_read.pca_components_)
assert_array_equal(ica.pca_mean_, ica_read.pca_mean_)
assert_array_equal(ica.pca_explained_variance_,
ica_read.pca_explained_variance_)
assert_array_equal(ica._pre_whitener, ica_read._pre_whitener)
# assert_raises(RuntimeError, ica_read.decompose_raw, raw)
sources = ica.get_sources_raw(raw)
sources2 = ica_read.get_sources_raw(raw)
assert_array_almost_equal(sources, sources2)
_raw1 = ica.pick_sources_raw(raw, exclude=[1])
_raw2 = ica_read.pick_sources_raw(raw, exclude=[1])
assert_array_almost_equal(_raw1[:, :][0], _raw2[:, :][0])
os.remove(test_ica_fname)
# check scrore funcs
for name, func in score_funcs.items():
if name in score_funcs_unsuited:
continue
scores = ica.find_sources_raw(raw, target='EOG 061', score_func=func,
start=0, stop=10)
assert_true(ica.n_components_ == len(scores))
# check univariate stats
scores = ica.find_sources_raw(raw, score_func=stats.skew)
# check exception handling
assert_raises(ValueError, ica.find_sources_raw, raw,
target=np.arange(1))
params = []
params += [(None, -1, slice(2), [0, 1])] # varicance, kurtosis idx params
#.........这里部分代码省略.........