本文整理汇总了Python中mne.preprocessing.ICA.plot_properties方法的典型用法代码示例。如果您正苦于以下问题:Python ICA.plot_properties方法的具体用法?Python ICA.plot_properties怎么用?Python ICA.plot_properties使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mne.preprocessing.ICA
的用法示例。
在下文中一共展示了ICA.plot_properties方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_plot_ica_properties
# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import plot_properties [as 别名]
def test_plot_ica_properties():
"""Test plotting of ICA properties."""
import matplotlib.pyplot as plt
raw = _get_raw(preload=True)
raw.add_proj([], remove_existing=True)
events = _get_events()
picks = _get_picks(raw)[:6]
pick_names = [raw.ch_names[k] for k in picks]
raw.pick_channels(pick_names)
with warnings.catch_warnings(record=True): # bad proj
epochs = Epochs(raw, events[:10], event_id, tmin, tmax, baseline=(None, 0), preload=True)
ica = ICA(noise_cov=read_cov(cov_fname), n_components=2, max_pca_components=2, n_pca_components=2)
with warnings.catch_warnings(record=True): # bad proj
ica.fit(raw)
# test _create_properties_layout
fig, ax = _create_properties_layout()
assert_equal(len(ax), 5)
topoargs = dict(topomap_args={"res": 10})
ica.plot_properties(raw, picks=0, **topoargs)
ica.plot_properties(epochs, picks=1, dB=False, plot_std=1.5, **topoargs)
ica.plot_properties(
epochs,
picks=1,
image_args={"sigma": 1.5},
topomap_args={"res": 10, "colorbar": True},
psd_args={"fmax": 65.0},
plot_std=False,
figsize=[4.5, 4.5],
)
plt.close("all")
assert_raises(ValueError, ica.plot_properties, epochs, dB=list("abc"))
assert_raises(ValueError, ica.plot_properties, epochs, plot_std=[])
assert_raises(ValueError, ica.plot_properties, ica)
assert_raises(ValueError, ica.plot_properties, [0.2])
assert_raises(ValueError, plot_ica_properties, epochs, epochs)
assert_raises(ValueError, ica.plot_properties, epochs, psd_args="not dict")
fig, ax = plt.subplots(2, 3)
ax = ax.ravel()[:-1]
ica.plot_properties(epochs, picks=1, axes=ax)
fig = ica.plot_properties(raw, picks=[0, 1], **topoargs)
assert_equal(len(fig), 2)
assert_raises(ValueError, plot_ica_properties, epochs, ica, picks=[0, 1], axes=ax)
assert_raises(ValueError, ica.plot_properties, epochs, axes="not axes")
plt.close("all")
示例2: print
# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import plot_properties [as 别名]
print(ica)
###############################################################################
# Plot ICA components
ica.plot_components() # can you spot some potential bad guys?
###############################################################################
# Component properties
# --------------------
#
# Let's take a closer look at properties of first three independent components.
# first, component 0:
ica.plot_properties(raw, picks=0)
###############################################################################
# we can see that the data were filtered so the spectrum plot is not
# very informative, let's change that:
ica.plot_properties(raw, picks=0, psd_args={'fmax': 35.})
###############################################################################
# we can also take a look at multiple different components at once:
ica.plot_properties(raw, picks=[1, 2], psd_args={'fmax': 35.})
###############################################################################
# Instead of opening individual figures with component properties, we can
# also pass an instance of Raw or Epochs in ``inst`` arument to
# ``ica.plot_components``. This would allow us to open component properties
# interactively by clicking on individual component topomaps. In the notebook
示例3: test_plot_ica_properties
# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import plot_properties [as 别名]
def test_plot_ica_properties():
"""Test plotting of ICA properties."""
import matplotlib.pyplot as plt
res = 8
raw = _get_raw(preload=True)
raw.add_proj([], remove_existing=True)
events = _get_events()
picks = _get_picks(raw)[:6]
pick_names = [raw.ch_names[k] for k in picks]
raw.pick_channels(pick_names)
epochs = Epochs(raw, events[:10], event_id, tmin, tmax,
baseline=(None, 0), preload=True)
ica = ICA(noise_cov=read_cov(cov_fname), n_components=2,
max_pca_components=2, n_pca_components=2)
with pytest.warns(RuntimeWarning, match='projection'):
ica.fit(raw)
# test _create_properties_layout
fig, ax = _create_properties_layout()
assert_equal(len(ax), 5)
topoargs = dict(topomap_args={'res': res, 'contours': 0, "sensors": False})
ica.plot_properties(raw, picks=0, **topoargs)
ica.plot_properties(epochs, picks=1, dB=False, plot_std=1.5, **topoargs)
ica.plot_properties(epochs, picks=1, image_args={'sigma': 1.5},
topomap_args={'res': 10, 'colorbar': True},
psd_args={'fmax': 65.}, plot_std=False,
figsize=[4.5, 4.5])
plt.close('all')
pytest.raises(TypeError, ica.plot_properties, epochs, dB=list('abc'))
pytest.raises(TypeError, ica.plot_properties, ica)
pytest.raises(TypeError, ica.plot_properties, [0.2])
pytest.raises(TypeError, plot_ica_properties, epochs, epochs)
pytest.raises(TypeError, ica.plot_properties, epochs,
psd_args='not dict')
pytest.raises(ValueError, ica.plot_properties, epochs, plot_std=[])
fig, ax = plt.subplots(2, 3)
ax = ax.ravel()[:-1]
ica.plot_properties(epochs, picks=1, axes=ax, **topoargs)
fig = ica.plot_properties(raw, picks=[0, 1], **topoargs)
assert_equal(len(fig), 2)
pytest.raises(TypeError, plot_ica_properties, epochs, ica, picks=[0, 1],
axes=ax)
pytest.raises(ValueError, ica.plot_properties, epochs, axes='not axes')
plt.close('all')
# Test merging grads.
raw = _get_raw(preload=True)
picks = pick_types(raw.info, meg='grad')[:10]
ica = ICA(n_components=2)
ica.fit(raw, picks=picks)
ica.plot_properties(raw)
plt.close('all')
示例4: ICA
# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import plot_properties [as 别名]
#
# - 1 - 30 Hz band-pass IIR filter
#
# - epoching -0.2 to 0.5 seconds with respect to events
data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
raw = mne.io.read_raw_fif(raw_fname, preload=True)
raw.pick_types(meg=True, eeg=False, exclude='bads', stim=True)
raw.filter(1, 30)
# longer + more epochs for more artifact exposure
events = mne.find_events(raw, stim_channel='STI 014')
epochs = mne.Epochs(raw, events, event_id=None, tmin=-0.2, tmax=0.5)
###############################################################################
# Fit ICA model using the FastICA algorithm, detect and plot components
# explaining ECG artifacts.
ica = ICA(n_components=0.95, method='fastica').fit(epochs)
ecg_epochs = create_ecg_epochs(raw, tmin=-.5, tmax=.5)
ecg_inds, scores = ica.find_bads_ecg(ecg_epochs)
ica.plot_components(ecg_inds)
###############################################################################
# Plot properties of ECG components:
ica.plot_properties(epochs, picks=ecg_inds)
示例5: create_ecg_epochs
# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import plot_properties [as 别名]
del eog_epochs, eog_average
# ECG
ecg_epochs = create_ecg_epochs(raw, tmin=-.5, tmax=.5)
ecg_inds, scores = ica.find_bads_ecg(ecg_epochs)
ecg_inds = ecg_inds[:n_max_ecg]
ica.exclude.extend(ecg_inds)
if ecg_inds:
fig = ica.plot_components(
ecg_inds, title=title % ('ecg', subject), colorbar=True)
fig.savefig(ica_folder + "plots/%s_%s_ecg_component_2.png" % (
subject, condition))
fig = ica.plot_overlay(raw, exclude=ecg_inds, show=False)
fig.savefig(ica_folder + "plots/%s_%s_ecg_excluded_2.png" % (
subject, condition))
fig = ica.plot_properties(raw, picks=ecg_inds)
fig[0].savefig(ica_folder + "plots/%s_%s_plot_properties_2.png" % (
subject, condition))
##########################################################################
# Apply the solution to Raw, Epochs or Evoked like this:
raw_ica = ica.apply(raw)
ica.save(ica_folder + "%s_%s-ica_2.fif" % (subject, condition)) # save ICA
# componenets
# Save raw with ICA removed
raw_ica.save(
ica_folder + "%s_%s_ica-raw.fif" % (subject, condition),
overwrite=True)
示例6:
# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import plot_properties [as 别名]
fig = ica.plot_scores(
scores, exclude=eog_inds, title=title % ('eog', subject))
fig.savefig(ica_folder + "plots/%s_%s_eog_scores.png" % (subject,
condition))
fig = ica.plot_sources(epochs, exclude=eog_inds)
fig.savefig(ica_folder + "plots/%s_%s_eog_source.png" % (subject,
condition))
fig = ica.plot_components(
eog_inds, title=title % ('eog', subject), colorbar=True)
fig.savefig(ica_folder + "plots/%s_%s_eog_component.png" % (subject,
condition))
fig = ica.plot_overlay(epochs.average(), exclude=eog_inds, show=False)
fig.savefig(ica_folder + "plots/%s_%s_eog_excluded.png" % (subject,
condition))
fig = ica.plot_properties(epochs, picks=eog_inds)
fig[0].savefig(ica_folder + "plots/%s_%s_plot_properties.png" % (
subject, condition))
# ECG
ecg_inds, scores = ica.find_bads_ecg(epochs)
ica.exclude += ecg_inds
if ecg_inds:
fig = ica.plot_components(
ecg_inds, title=title % ('ecg', subject), colorbar=True)
fig.savefig(ica_folder + "plots/%s_%s_ecg_component.png" % (subject,
condition))
fig = ica.plot_overlay(epochs.average(), exclude=ecg_inds, show=False)
fig.savefig(ica_folder + "plots/%s_%s_ecg_excluded.png" % (subject,
condition))