当前位置: 首页>>代码示例>>Python>>正文


Python ICA.fit方法代码示例

本文整理汇总了Python中mne.preprocessing.ICA.fit方法的典型用法代码示例。如果您正苦于以下问题:Python ICA.fit方法的具体用法?Python ICA.fit怎么用?Python ICA.fit使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mne.preprocessing.ICA的用法示例。


在下文中一共展示了ICA.fit方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_eog_channel

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import fit [as 别名]
def test_eog_channel(method):
    """Test that EOG channel is included when performing ICA."""
    _skip_check_picard(method)
    raw = read_raw_fif(raw_fname, preload=True)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=True, stim=True, ecg=False,
                       eog=True, exclude='bads')
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), preload=True)
    n_components = 0.9
    ica = ICA(n_components=n_components, method=method)
    # Test case for MEG and EOG data. Should have EOG channel
    for inst in [raw, epochs]:
        picks1a = pick_types(inst.info, meg=True, stim=False, ecg=False,
                             eog=False, exclude='bads')[:4]
        picks1b = pick_types(inst.info, meg=False, stim=False, ecg=False,
                             eog=True, exclude='bads')
        picks1 = np.append(picks1a, picks1b)
        ica.fit(inst, picks=picks1)
        assert (any('EOG' in ch for ch in ica.ch_names))
    # Test case for MEG data. Should have no EOG channel
    for inst in [raw, epochs]:
        picks1 = pick_types(inst.info, meg=True, stim=False, ecg=False,
                            eog=False, exclude='bads')[:5]
        ica.fit(inst, picks=picks1)
        assert not any('EOG' in ch for ch in ica.ch_names)
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:28,代码来源:test_ica.py

示例2: apply_ica

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import fit [as 别名]
def apply_ica(fname_filtered, n_components=0.99, decim=None):

    ''' Applies ICA to a list of (filtered) raw files. '''

    import mne
    from mne.preprocessing import ICA
    import os


    if isinstance(fname_filtered, list):
        fnfilt = fname_filtered
    else:
        if isinstance(fname_filtered, str):
            fnfilt = list([fname_filtered]) 
        else:
            fnfilt = list(fname_filtered)

    # loop across all filenames
    for fname in fnfilt:                    
        name  = os.path.split(fname)[1]
        print ">>>> perform ICA signal decomposition on :  "+name
        # load filtered data
        raw = mne.io.Raw(fname,preload=True)
        picks = mne.pick_types(raw.info, meg=True, exclude='bads')
        # ICA decomposition
        ica = ICA(n_components=n_components, max_pca_components=None)

        ica.fit(raw, picks=picks, decim=decim, reject={'mag': 5e-12})

        # save ICA object 
        fnica_out = fname.strip('-raw.fif') + '-ica.fif'
        # fnica_out = fname[0:len(fname)-4]+'-ica.fif'
        ica.save(fnica_out)
开发者ID:dengemann,项目名称:jumeg-1,代码行数:35,代码来源:jumeg_preprocessing.py

示例3: run_ica

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import fit [as 别名]
def run_ica(method):
    ica = ICA(n_components=20, method=method, random_state=0)
    t0 = time()
    ica.fit(raw, picks=picks, reject=reject)
    fit_time = time() - t0
    title = ('ICA decomposition using %s (took %.1fs)' % (method, fit_time))
    ica.plot_components(title=title)
开发者ID:SherazKhan,项目名称:mne-python,代码行数:9,代码来源:plot_ica_comparison.py

示例4: test_n_components_and_max_pca_components_none

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import fit [as 别名]
def test_n_components_and_max_pca_components_none(method):
    """Test n_components and max_pca_components=None."""
    _skip_check_picard(method)
    raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data()
    events = read_events(event_name)
    picks = pick_types(raw.info, eeg=True, meg=False)
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), preload=True)

    max_pca_components = None
    n_components = None
    random_state = 12345

    tempdir = _TempDir()
    output_fname = op.join(tempdir, 'test_ica-ica.fif')
    ica = ICA(max_pca_components=max_pca_components, method=method,
              n_components=n_components, random_state=random_state)
    with pytest.warns(None):  # convergence
        ica.fit(epochs)
    ica.save(output_fname)

    ica = read_ica(output_fname)

    # ICA.fit() replaced max_pca_components, which was previously None,
    # with the appropriate integer value.
    assert_equal(ica.max_pca_components, epochs.info['nchan'])
    assert ica.n_components is None
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:29,代码来源:test_ica.py

示例5: test_plot_ica_overlay

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import fit [as 别名]
def test_plot_ica_overlay():
    """Test plotting of ICA cleaning."""
    import matplotlib.pyplot as plt
    raw = _get_raw(preload=True)
    picks = _get_picks(raw)
    ica = ICA(noise_cov=read_cov(cov_fname), n_components=2,
              max_pca_components=3, n_pca_components=3)
    # can't use info.normalize_proj here because of how and when ICA and Epochs
    # objects do picking of Raw data
    with pytest.warns(RuntimeWarning, match='projection'):
        ica.fit(raw, picks=picks)
    # don't test raw, needs preload ...
    with pytest.warns(RuntimeWarning, match='projection'):
        ecg_epochs = create_ecg_epochs(raw, picks=picks)
    ica.plot_overlay(ecg_epochs.average())
    with pytest.warns(RuntimeWarning, match='projection'):
        eog_epochs = create_eog_epochs(raw, picks=picks)
    ica.plot_overlay(eog_epochs.average())
    pytest.raises(TypeError, ica.plot_overlay, raw[:2, :3][0])
    ica.plot_overlay(raw)
    plt.close('all')

    # smoke test for CTF
    raw = read_raw_fif(raw_ctf_fname)
    raw.apply_gradient_compensation(3)
    picks = pick_types(raw.info, meg=True, ref_meg=False)
    ica = ICA(n_components=2, max_pca_components=3, n_pca_components=3)
    ica.fit(raw, picks=picks)
    with pytest.warns(RuntimeWarning, match='longer than'):
        ecg_epochs = create_ecg_epochs(raw)
    ica.plot_overlay(ecg_epochs.average())
    plt.close('all')
开发者ID:SherazKhan,项目名称:mne-python,代码行数:34,代码来源:test_ica.py

示例6: test_n_components_none

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import fit [as 别名]
def test_n_components_none():
    """Test n_components=None."""
    raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data()
    events = read_events(event_name)
    picks = pick_types(raw.info, eeg=True, meg=False)
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), preload=True)

    max_pca_components = 10
    n_components = None
    random_state = 12345

    tempdir = _TempDir()
    output_fname = op.join(tempdir, 'test_ica-ica.fif')

    ica = ICA(max_pca_components=max_pca_components,
              n_components=n_components, random_state=random_state)
    with warnings.catch_warnings(record=True):  # convergence
        ica.fit(epochs)
    ica.save(output_fname)

    ica = read_ica(output_fname)

    # ICA.fit() replaced max_pca_components, which was previously None,
    # with the appropriate integer value.
    assert_equal(ica.max_pca_components, 10)
    assert_is_none(ica.n_components)
开发者ID:Lx37,项目名称:mne-python,代码行数:29,代码来源:test_ica.py

示例7: test_plot_instance_components

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import fit [as 别名]
def test_plot_instance_components():
    """Test plotting of components as instances of raw and epochs."""
    import matplotlib.pyplot as plt
    raw = _get_raw()
    picks = _get_picks(raw)
    ica = ICA(noise_cov=read_cov(cov_fname), n_components=2,
              max_pca_components=3, n_pca_components=3)
    with pytest.warns(RuntimeWarning, match='projection'):
        ica.fit(raw, picks=picks)
    fig = ica.plot_sources(raw, exclude=[0], title='Components')
    for key in ['down', 'up', 'right', 'left', 'o', '-', '+', '=', 'pageup',
                'pagedown', 'home', 'end', 'f11', 'b']:
        fig.canvas.key_press_event(key)
    ax = fig.get_axes()[0]
    line = ax.lines[0]
    _fake_click(fig, ax, [line.get_xdata()[0], line.get_ydata()[0]],
                'data')
    _fake_click(fig, ax, [-0.1, 0.9])  # click on y-label
    fig.canvas.key_press_event('escape')
    plt.close('all')
    epochs = _get_epochs()
    fig = ica.plot_sources(epochs, exclude=[0], title='Components')
    for key in ['down', 'up', 'right', 'left', 'o', '-', '+', '=', 'pageup',
                'pagedown', 'home', 'end', 'f11', 'b']:
        fig.canvas.key_press_event(key)
    # Test a click
    ax = fig.get_axes()[0]
    line = ax.lines[0]
    _fake_click(fig, ax, [line.get_xdata()[0], line.get_ydata()[0]], 'data')
    _fake_click(fig, ax, [-0.1, 0.9])  # click on y-label
    fig.canvas.key_press_event('escape')
    plt.close('all')
开发者ID:SherazKhan,项目名称:mne-python,代码行数:34,代码来源:test_ica.py

示例8: test_ica_ctf

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import fit [as 别名]
def test_ica_ctf():
    """Test run ICA computation on ctf data with/without compensation."""
    method = 'fastica'
    raw = read_raw_ctf(ctf_fname, preload=True)
    events = make_fixed_length_events(raw, 99999)
    for comp in [0, 1]:
        raw.apply_gradient_compensation(comp)
        epochs = Epochs(raw, events, None, -0.2, 0.2, preload=True)
        evoked = epochs.average()

        # test fit
        for inst in [raw, epochs]:
            ica = ICA(n_components=2, random_state=0, max_iter=2,
                      method=method)
            with pytest.warns(UserWarning, match='did not converge'):
                ica.fit(inst)

        # test apply and get_sources
        for inst in [raw, epochs, evoked]:
            ica.apply(inst)
            ica.get_sources(inst)

    # test mixed compensation case
    raw.apply_gradient_compensation(0)
    ica = ICA(n_components=2, random_state=0, max_iter=2, method=method)
    with pytest.warns(UserWarning, match='did not converge'):
        ica.fit(raw)
    raw.apply_gradient_compensation(1)
    epochs = Epochs(raw, events, None, -0.2, 0.2, preload=True)
    evoked = epochs.average()
    for inst in [raw, epochs, evoked]:
        with pytest.raises(RuntimeError, match='Compensation grade of ICA'):
            ica.apply(inst)
        with pytest.raises(RuntimeError, match='Compensation grade of ICA'):
            ica.get_sources(inst)
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:37,代码来源:test_ica.py

示例9: test_ica_eeg

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import fit [as 别名]
def test_ica_eeg():
    """Test ICA on EEG."""
    method = 'fastica'
    raw_fif = read_raw_fif(fif_fname, preload=True)
    with pytest.warns(RuntimeWarning, match='events'):
        raw_eeglab = read_raw_eeglab(input_fname=eeglab_fname,
                                     montage=eeglab_montage, preload=True)
    for raw in [raw_fif, raw_eeglab]:
        events = make_fixed_length_events(raw, 99999, start=0, stop=0.3,
                                          duration=0.1)
        picks_meg = pick_types(raw.info, meg=True, eeg=False)[:2]
        picks_eeg = pick_types(raw.info, meg=False, eeg=True)[:2]
        picks_all = []
        picks_all.extend(picks_meg)
        picks_all.extend(picks_eeg)
        epochs = Epochs(raw, events, None, -0.1, 0.1, preload=True)
        evoked = epochs.average()

        for picks in [picks_meg, picks_eeg, picks_all]:
            if len(picks) == 0:
                continue
            # test fit
            for inst in [raw, epochs]:
                ica = ICA(n_components=2, random_state=0, max_iter=2,
                          method=method)
                with pytest.warns(None):
                    ica.fit(inst, picks=picks)

            # test apply and get_sources
            for inst in [raw, epochs, evoked]:
                ica.apply(inst)
                ica.get_sources(inst)

    with pytest.warns(RuntimeWarning, match='MISC channel'):
        raw = read_raw_ctf(ctf_fname2,  preload=True)
    events = make_fixed_length_events(raw, 99999, start=0, stop=0.2,
                                      duration=0.1)
    picks_meg = pick_types(raw.info, meg=True, eeg=False)[:2]
    picks_eeg = pick_types(raw.info, meg=False, eeg=True)[:2]
    picks_all = picks_meg + picks_eeg
    for comp in [0, 1]:
        raw.apply_gradient_compensation(comp)
        epochs = Epochs(raw, events, None, -0.1, 0.1, preload=True)
        evoked = epochs.average()

        for picks in [picks_meg, picks_eeg, picks_all]:
            if len(picks) == 0:
                continue
            # test fit
            for inst in [raw, epochs]:
                ica = ICA(n_components=2, random_state=0, max_iter=2,
                          method=method)
                with pytest.warns(None):
                    ica.fit(inst)

            # test apply and get_sources
            for inst in [raw, epochs, evoked]:
                ica.apply(inst)
                ica.get_sources(inst)
开发者ID:SherazKhan,项目名称:mne-python,代码行数:61,代码来源:test_ica.py

示例10: test_plot_ica_properties

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import fit [as 别名]
def test_plot_ica_properties():
    """Test plotting of ICA properties."""
    import matplotlib.pyplot as plt

    res = 8
    raw = _get_raw(preload=True)
    raw.add_proj([], remove_existing=True)
    events = _get_events()
    picks = _get_picks(raw)[:6]
    pick_names = [raw.ch_names[k] for k in picks]
    raw.pick_channels(pick_names)

    with warnings.catch_warnings(record=True):  # bad proj
        epochs = Epochs(raw, events[:10], event_id, tmin, tmax,
                        baseline=(None, 0), preload=True)

    ica = ICA(noise_cov=read_cov(cov_fname), n_components=2,
              max_pca_components=2, n_pca_components=2)
    with warnings.catch_warnings(record=True):  # bad proj
        ica.fit(raw)

    # test _create_properties_layout
    fig, ax = _create_properties_layout()
    assert_equal(len(ax), 5)

    topoargs = dict(topomap_args={'res': res, 'contours': 0, "sensors": False})
    ica.plot_properties(raw, picks=0, **topoargs)
    ica.plot_properties(epochs, picks=1, dB=False, plot_std=1.5, **topoargs)
    ica.plot_properties(epochs, picks=1, image_args={'sigma': 1.5},
                        topomap_args={'res': 10, 'colorbar': True},
                        psd_args={'fmax': 65.}, plot_std=False,
                        figsize=[4.5, 4.5])
    plt.close('all')

    assert_raises(ValueError, ica.plot_properties, epochs, dB=list('abc'))
    assert_raises(ValueError, ica.plot_properties, epochs, plot_std=[])
    assert_raises(ValueError, ica.plot_properties, ica)
    assert_raises(ValueError, ica.plot_properties, [0.2])
    assert_raises(ValueError, plot_ica_properties, epochs, epochs)
    assert_raises(ValueError, ica.plot_properties, epochs,
                  psd_args='not dict')

    fig, ax = plt.subplots(2, 3)
    ax = ax.ravel()[:-1]
    ica.plot_properties(epochs, picks=1, axes=ax, **topoargs)
    fig = ica.plot_properties(raw, picks=[0, 1], **topoargs)
    assert_equal(len(fig), 2)
    assert_raises(ValueError, plot_ica_properties, epochs, ica, picks=[0, 1],
                  axes=ax)
    assert_raises(ValueError, ica.plot_properties, epochs, axes='not axes')
    plt.close('all')

    # Test merging grads.
    raw = _get_raw(preload=True)
    picks = pick_types(raw.info, meg='grad')[:10]
    ica = ICA(n_components=2)
    ica.fit(raw, picks=picks)
    ica.plot_properties(raw)
    plt.close('all')
开发者ID:claire-braboszcz,项目名称:mne-python,代码行数:61,代码来源:test_ica.py

示例11: decompose

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import fit [as 别名]
 def decompose(self, X, y=None):
     raw_inst = RawArray(X.T, create_info(self.channel_names, self.fs, 'eeg', None))
     ica = ICA(method='extended-infomax')
     ica.fit(raw_inst)
     filters = np.dot(ica.unmixing_matrix_, ica.pca_components_[:ica.n_components_]).T
     topographies = np.linalg.inv(filters).T
     scores = self.get_scores(X, filters)
     return scores, filters, topographies
开发者ID:nikolaims,项目名称:nfb,代码行数:10,代码来源:decompositions.py

示例12: test_ica_full_data_recovery

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import fit [as 别名]
def test_ica_full_data_recovery(method):
    """Test recovery of full data when no source is rejected."""
    # Most basic recovery
    _skip_check_picard(method)
    raw = read_raw_fif(raw_fname).crop(0.5, stop).load_data()
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')[:10]
    with pytest.warns(RuntimeWarning, match='projection'):
        epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks,
                        baseline=(None, 0), preload=True)
    evoked = epochs.average()
    n_channels = 5
    data = raw._data[:n_channels].copy()
    data_epochs = epochs.get_data()
    data_evoked = evoked.data
    raw.set_annotations(Annotations([0.5], [0.5], ['BAD']))
    methods = [method]
    for method in methods:
        stuff = [(2, n_channels, True), (2, n_channels // 2, False)]
        for n_components, n_pca_components, ok in stuff:
            ica = ICA(n_components=n_components, random_state=0,
                      max_pca_components=n_pca_components,
                      n_pca_components=n_pca_components,
                      method=method, max_iter=1)
            with pytest.warns(UserWarning, match=None):  # sometimes warns
                ica.fit(raw, picks=list(range(n_channels)))
            raw2 = ica.apply(raw.copy(), exclude=[])
            if ok:
                assert_allclose(data[:n_channels], raw2._data[:n_channels],
                                rtol=1e-10, atol=1e-15)
            else:
                diff = np.abs(data[:n_channels] - raw2._data[:n_channels])
                assert (np.max(diff) > 1e-14)

            ica = ICA(n_components=n_components, method=method,
                      max_pca_components=n_pca_components,
                      n_pca_components=n_pca_components, random_state=0)
            with pytest.warns(None):  # sometimes warns
                ica.fit(epochs, picks=list(range(n_channels)))
            epochs2 = ica.apply(epochs.copy(), exclude=[])
            data2 = epochs2.get_data()[:, :n_channels]
            if ok:
                assert_allclose(data_epochs[:, :n_channels], data2,
                                rtol=1e-10, atol=1e-15)
            else:
                diff = np.abs(data_epochs[:, :n_channels] - data2)
                assert (np.max(diff) > 1e-14)

            evoked2 = ica.apply(evoked.copy(), exclude=[])
            data2 = evoked2.data[:n_channels]
            if ok:
                assert_allclose(data_evoked[:n_channels], data2,
                                rtol=1e-10, atol=1e-15)
            else:
                diff = np.abs(evoked.data[:n_channels] - data2)
                assert (np.max(diff) > 1e-14)
    pytest.raises(ValueError, ICA, method='pizza-decomposision')
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:60,代码来源:test_ica.py

示例13: test_ica_full_data_recovery

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import fit [as 别名]
def test_ica_full_data_recovery():
    """Test recovery of full data when no source is rejected"""
    # Most basic recovery
    raw = Raw(raw_fname).crop(0.5, stop, False)
    raw.load_data()
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')[:10]
    with warnings.catch_warnings(record=True):  # bad proj
        epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks,
                        baseline=(None, 0), preload=True)
    evoked = epochs.average()
    n_channels = 5
    data = raw._data[:n_channels].copy()
    data_epochs = epochs.get_data()
    data_evoked = evoked.data
    for method in ['fastica']:
        stuff = [(2, n_channels, True), (2, n_channels // 2, False)]
        for n_components, n_pca_components, ok in stuff:
            ica = ICA(n_components=n_components,
                      max_pca_components=n_pca_components,
                      n_pca_components=n_pca_components,
                      method=method, max_iter=1)
            with warnings.catch_warnings(record=True):
                ica.fit(raw, picks=list(range(n_channels)))
            raw2 = ica.apply(raw, exclude=[], copy=True)
            if ok:
                assert_allclose(data[:n_channels], raw2._data[:n_channels],
                                rtol=1e-10, atol=1e-15)
            else:
                diff = np.abs(data[:n_channels] - raw2._data[:n_channels])
                assert_true(np.max(diff) > 1e-14)

            ica = ICA(n_components=n_components,
                      max_pca_components=n_pca_components,
                      n_pca_components=n_pca_components)
            with warnings.catch_warnings(record=True):
                ica.fit(epochs, picks=list(range(n_channels)))
            epochs2 = ica.apply(epochs, exclude=[], copy=True)
            data2 = epochs2.get_data()[:, :n_channels]
            if ok:
                assert_allclose(data_epochs[:, :n_channels], data2,
                                rtol=1e-10, atol=1e-15)
            else:
                diff = np.abs(data_epochs[:, :n_channels] - data2)
                assert_true(np.max(diff) > 1e-14)

            evoked2 = ica.apply(evoked, exclude=[], copy=True)
            data2 = evoked2.data[:n_channels]
            if ok:
                assert_allclose(data_evoked[:n_channels], data2,
                                rtol=1e-10, atol=1e-15)
            else:
                diff = np.abs(evoked.data[:n_channels] - data2)
                assert_true(np.max(diff) > 1e-14)
    assert_raises(ValueError, ICA, method='pizza-decomposision')
开发者ID:hxi,项目名称:mne-python,代码行数:58,代码来源:test_ica.py

示例14: test_plot_ica_scores

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import fit [as 别名]
def test_plot_ica_scores():
    """Test plotting of ICA scores
    """
    raw = _get_raw()
    ica_picks = pick_types(raw.info, meg=True, eeg=False, stim=False, ecg=False, eog=False, exclude="bads")
    ica = ICA(noise_cov=read_cov(cov_fname), n_components=2, max_pca_components=3, n_pca_components=3)
    ica.fit(raw, picks=ica_picks)
    ica.plot_scores([0.3, 0.2], axhline=[0.1, -0.1])
    assert_raises(ValueError, ica.plot_scores, [0.2])
    plt.close("all")
开发者ID:rgoj,项目名称:mne-python,代码行数:12,代码来源:test_viz.py

示例15: test_plot_ica_components

# 需要导入模块: from mne.preprocessing import ICA [as 别名]
# 或者: from mne.preprocessing.ICA import fit [as 别名]
def test_plot_ica_components():
    """Test plotting of ICA solutions."""
    import matplotlib.pyplot as plt
    res = 8
    fast_test = {"res": res, "contours": 0, "sensors": False}
    raw = _get_raw()
    ica = ICA(noise_cov=read_cov(cov_fname), n_components=2,
              max_pca_components=3, n_pca_components=3)
    ica_picks = _get_picks(raw)
    with warnings.catch_warnings(record=True):
        ica.fit(raw, picks=ica_picks)
    warnings.simplefilter('always', UserWarning)
    with warnings.catch_warnings(record=True):
        for components in [0, [0], [0, 1], [0, 1] * 2, None]:
            ica.plot_components(components, image_interp='bilinear',
                                colorbar=True, **fast_test)
        plt.close('all')

        # test interactive mode (passing 'inst' arg)
        ica.plot_components([0, 1], image_interp='bilinear', inst=raw, res=16)
        fig = plt.gcf()

        # test title click
        # ----------------
        lbl = fig.axes[1].get_label()
        ica_idx = int(lbl[-3:])
        titles = [ax.title for ax in fig.axes]
        title_pos_midpoint = (titles[1].get_window_extent().extents
                              .reshape((2, 2)).mean(axis=0))
        # first click adds to exclude
        _fake_click(fig, fig.axes[1], title_pos_midpoint, xform='pix')
        assert ica_idx in ica.exclude
        # clicking again removes from exclude
        _fake_click(fig, fig.axes[1], title_pos_midpoint, xform='pix')
        assert ica_idx not in ica.exclude

        # test topo click
        # ---------------
        _fake_click(fig, fig.axes[1], (0., 0.), xform='data')

        c_fig = plt.gcf()
        labels = [ax.get_label() for ax in c_fig.axes]

        for l in ['topomap', 'image', 'erp', 'spectrum', 'variance']:
            assert_true(l in labels)

        topomap_ax = c_fig.axes[labels.index('topomap')]
        title = topomap_ax.get_title()
        assert_true(lbl == title)

    ica.info = None
    assert_raises(ValueError, ica.plot_components, 1)
    assert_raises(RuntimeError, ica.plot_components, 1, ch_type='mag')
    plt.close('all')
开发者ID:claire-braboszcz,项目名称:mne-python,代码行数:56,代码来源:test_ica.py


注:本文中的mne.preprocessing.ICA.fit方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。