当前位置: 首页>>代码示例>>Python>>正文


Python Classifier.train方法代码示例

本文整理汇总了Python中classifier.Classifier.train方法的典型用法代码示例。如果您正苦于以下问题:Python Classifier.train方法的具体用法?Python Classifier.train怎么用?Python Classifier.train使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在classifier.Classifier的用法示例。


在下文中一共展示了Classifier.train方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: runNeuralNetwork

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import train [as 别名]
def runNeuralNetwork(train, test, batchSize, classNum, hLayer=None, mode=None, momentumFactor=0.0):
    """
    A function that call the the classifier to train a learning model.
    Args:
        train: training examples (numpy)
        test: testing examples (numpy)
        batchSize: the number of training example for each iteration
        classNum: the number of classes
        hLayer: number of the hidden layer nodes (list)
        mode: weight initializing mode
        momentumFactor: momentum factor
    """
    print ""
    print "Neural Network =============================="
    print " - number of hidden layer nodes:",
    if hLayer is not None:
        print hLayer
    else:
        print " default (one hidden layer with node number = 2 * feature number)"

    print " - weight initialization mode:",
    if mode is not None:
        print mode
    else:
        print "default"

    print " - momentum factor", momentumFactor

    nn = Classifier("neural_network", hidden_layer=hLayer, weightInitMode=mode, momentumFactor=momentumFactor)
    nn.train(train, test, classNum, batchSize)
    nn.test(test, "test")
开发者ID:jasonlingo,项目名称:Machine-Learning-Assignments,代码行数:33,代码来源:main.py

示例2: run

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import train [as 别名]
    def run(self):
        """
        Function: Run
        -------------
        This function will evaluate your solution! You do not need to
        write any code in this file, however you SHOULD understand this
        function!
        """
        print "Running the full pipeline!"
        K=25
        trainImages = util.loadTrainImages()[:1000]
        testImages = util.loadTestImages()

        classifier = Classifier()

        print 'Training..........'
        classifier.train(trainImages, K)

        trainPredictions = classifier.test(trainImages)
        trainAccuracy = self.evaluate(trainPredictions, trainImages)

        print 'Testing...........'
        testPredictions = classifier.test(testImages)
        testAccuracy = self.evaluate(testPredictions, testImages)

        print 'All done. Here is your summary:'
        self.reportAccuracy(trainAccuracy, 'Train Accuracy')
        self.reportAccuracy(testAccuracy, 'Test Accuracy')
开发者ID:awni,项目名称:image_classifier,代码行数:30,代码来源:evaluator.py

示例3: main

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import train [as 别名]
def main(c = "decision_tree", option = "IG", dataset = "iris", ratio = 0.8):

	classifier_types = {0: "decision_tree", 1: "naive_bayes", 2: "neural_net"}
	options = {0:["IG", "IGR"], 1:["normal"], 2:["shallow", "medium"]}

	ratio = float(ratio)

	if dataset == "monks":
		(training, test) = load_data.load_monks(ratio)
	elif dataset == "congress":
		(training, test) = load_data.load_congress_data(ratio)
	elif dataset == "iris":
		(training, test) = load_data.load_iris(ratio)
	else:
		print "Error: Cannot find dataset name."
		return

	print "Training... Please hold."
	# classifier_types = {0: "decision_tree", 2: "neural_net"}
	# options = {0:["IG", "IGR"], 2:["shallow", "medium"]}
	# (training, test) = load_data.load_iris(0.8)
	# nn_classifier = Classifier(classifier_type="neural_net", option = "medium")
	# nn_classifier.train(training)
	# nn_classifier.test(test)

	# print test
	# (training, test) = load_data.load_congress_data(0.8)
	# print test
	# (training, test) = load_data.load_monks(1)
	# print test	

	# (training, test) = load_data.load_iris(0.8)
	# print training
	# "option = IG/IGR"
	# dt_classifier = Classifier(classifier_type="decision_tree", weights=[], option="IG")
	# dt_classifier.train(training)
	# dt_classifier.test(test)
	# for i, c in classifier_types.iteritems():
	# 	for option in options[i]:
	print "                                                                 "
	print "================================================================="
	print "Dataset    = ", dataset
	print "Classifier = ", c
	print "Option     = ", option
	classifier = Classifier(classifier_type=c, weights = [], option = option)
	classifier.train(training)
	classifier.test(test)
	print "================================================================="
	print "                                                                 "
	# option value could be either shallow(3 layers) or medium(5)
	# nn_classifier = Classifier(classifier_type="neural_net", option = "medium")
	# nn_classifier.train(training)
	# nn_classifier.test(test)
	return 
开发者ID:lb5160482,项目名称:Machine-Learning-Classifier-Artificial-Intelligence,代码行数:56,代码来源:train_and_test.py

示例4: test_performance

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import train [as 别名]
def test_performance(args, num_runs):
    #Features:
    features = ["skewness", "spectral_rolloff", "energy", "sv", "spread", "centroid", "zcr", "obsi", "kurtosis"]
    option = [100, 10, 0.9, 2, 0.05, 1000, selection.ROULETTE_WHEEL_SELECTION]
    for i in range(1, len(features) + 1):
        print "Num of features:", i
        for num_run in range(num_runs):
            classifier = Classifier(args['data'], discrete_intervals=option[0], size_rule_generation=option[1], filter_list=features[:i], log_results=False)
            start = time.clock()
            classifier.train(req_min_fitness=option[2], gen_select=option[3], mutation_prob=option[4], limit_generations=option[5], selection_type=option[6])
            duration = (time.clock() - start)*1000
            print num_run, "\t", duration
开发者ID:vierja,项目名称:clasificacion-de-musica,代码行数:14,代码来源:main.py

示例5: trainNtest

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import train [as 别名]
def trainNtest(args):
    classifierType = ["decision_tree", "naive_bayes", "neural_network"]
    data_set = ["congress", "monk", "iris"]

    
    data = ""
    if len(args) == 4:
        if args[0][3:] == "congress":
            data = ld.load_congress_data(int(args[1][3:]) / 100.0)
            num_input = 16
            num_output = 2 
        elif args[0][3:] == "monk":
            data = ld.load_monks(int(args[1]))
            num_input = 6
            num_output = 2 
        elif args[0][3:] == "iris":
            data = ld.load_iris(int(args[1][3:]) / 100.0)
            num_input = 4
            num_output = 3
        else:
            print "INVALID DATA NAME"
            return
        method_num = int(args[2][3])
        kwargs = {}
        if method_num == 0 or method_num == 2:
            kwargs[1] = args[2][5]
            kwargs[2] = args[2][7]
            classifier = Classifier(classifierType[int(args[2][3])], one=args[2][5], two=args[2][7], num_input=num_input, num_output=num_output)
        else:
            classifier = Classifier(classifierType[int(args[2][3])])
    else:
        print "ERROR: NEED 4 PARAMETERS"
        return 


    #pdb.set_trace()
    #nb = Naive_Bayes("naive_bayes")

    #classifier = Classifier(classifierType[1])
    #data = ld.load_congress_data(.85)

    #data = ld.load_iris(.70)

    #pdb.set_trace()

    classifier.train(data[0])


    if args[3] == "-test":
        classifier.test(data[1])
    else:
        classifier.test(data[0])
开发者ID:azpoliak,项目名称:ai_homework4,代码行数:54,代码来源:train_and_test.py

示例6: main

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import train [as 别名]
def main():
    args = parser.parse_args()
    data_json = read_dataset(args.data)

    processor = TextProcessor()
    classifier = Classifier(processor)
    classifier.train(data_json)

    serialized_classifier = classifier.dump()

    ensure_directory(args.output)
    with open(args.output, 'w') as f:
        f.write(serialized_classifier)
        f.write(os.linesep)
开发者ID:bernardorufino,项目名称:tg-articles,代码行数:16,代码来源:train.py

示例7: average_multiple_runs

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import train [as 别名]
def average_multiple_runs(num_runs, options, args):
    for num, option in enumerate(options):
        print "Running", num_runs, "iterations with options:", option
        list_best_results = []
        list_test_results = []
        list_correct_results = []
        for i in range(num_runs):
            print "Running #" + str(i + 1)
            classifier = Classifier(args['data'], discrete_intervals=option[0], size_rule_generation=option[1], filter_list=["skewness", "spectral_rolloff", "energy", "sv", "spread", "centroid", "obsi", "kurtosis"], log_results=False)
            best_results = classifier.train(req_min_fitness=option[2], gen_select=option[3], mutation_prob=option[4], limit_generations=option[5], selection_type=option[6])
            test_results, correct_results = classifier.test()
            list_best_results.append(best_results)
            list_test_results.append(test_results)
            list_correct_results.append(correct_results)
        print "Results for option: ", option
        print "run\ttype\tgen\tfitness"
        for i, results in enumerate(list_best_results):
            for rule, result in results.items():
                print str(i + 1) + "\t" + rule[:7] + "\t" + str(result["generation"]) + "\t" + str(result["fitness"])

        print "run\ttype\tavg correct rules"
        for i, results in enumerate(list_test_results):
            for avg_map in results:
                print str(i + 1) + "\t" + avg_map.keys()[0][:7] + "\t" + str(avg_map[avg_map.keys()[0]])

        print "run\ttype\tavg correct results"
        for i, results in enumerate(list_correct_results):
            for avg_map in results:
                print str(i + 1) + "\t" + avg_map.keys()[0][:7] + "\t" + str(avg_map[avg_map.keys()[0]])
开发者ID:vierja,项目名称:clasificacion-de-musica,代码行数:31,代码来源:main.py

示例8: runDev

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import train [as 别名]
    def runDev(self):
        print "Running in development mode"

        K=5
        trainImages = util.loadTrainImages()[:100]
        testImages = util.loadTestImages()[:100]
        
        classifier = Classifier()
        
        print 'Training..........'
        classifier.train(trainImages, K)
        trainPredictions = classifier.test(trainImages)
        trainAccuracy = self.evaluate(trainPredictions, trainImages)

        print 'All done. Here is your summary:'
        self.reportAccuracy(trainAccuracy, 'Train Accuracy')
开发者ID:howpenghui,项目名称:visualCortex,代码行数:18,代码来源:evaluator.py

示例9: main

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import train [as 别名]
def main():
    parser = argparse.ArgumentParser(description='Clasificador de musica.\nToma los datos de entrenamiento de un archivo y utiliza algoritmos evolutivos para crear y mejorar las reglas de clasificación.')
    parser.add_argument('-d', '--data', help='Archivo donde se encuentra la información fuente para el clasificador.')
    args = vars(parser.parse_args())

    """
    Los valores default son:
        tamaño discretizacion - 100
        poblacion de generacion - 10
        min fitness para terminar - 0.9
        numero a seleccionar - 4
        porcentaje de mutacion - 0.05
        maximo de generaciones - 10000
        tipo de seleccion - ROULETTE_WHEEL_SELECTION
    """
    defaults = [100, 10, 0.9, 4, 0.05, 10000, selection.ROULETTE_WHEEL_SELECTION]

    classifier = Classifier(args['data'], discrete_intervals=defaults[0], size_rule_generation=defaults[1], filter_list=["skewness", "spectral_rolloff", "energy", "sv", "spread", "centroid", "obsi", "kurtosis"], log_results=True)
    start = time.clock()
    best_results = classifier.train(req_min_fitness=defaults[2], gen_select=defaults[3], mutation_prob=defaults[4], limit_generations=defaults[5])
    duration = (time.clock() - start)*1000
    print "Duration\t", duration, "ms"
    print "Training endend."
    print "Best results:", ', '.join([str(key) + " fitness: " + str(value['fitness']) for key, value in best_results.items()])
    print "Testing:"
    classifier.test()
    print "Testing ended."
开发者ID:vierja,项目名称:clasificacion-de-musica,代码行数:29,代码来源:main.py

示例10: _learn

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import train [as 别名]
        def _learn(sample):
            _extname = sample.get('extname')
            _filename = sample.get('filename')
            _langname = sample['language']

            if _extname:
                if _extname not in db['extnames'][_langname]:
                    db['extnames'][_langname].append(_extname)
                    db['extnames'][_langname].sort()

            if _filename:
                db['filenames'][_langname].append(_filename)
                db['filenames'][_langname].sort()

            data = open(sample['path']).read()
            Classifier.train(db, _langname, data)
开发者ID:arnauorriols,项目名称:plangclassifier,代码行数:18,代码来源:samples.py

示例11: main

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import train [as 别名]
def main():
    args = parser.parse_args()
    data_json = read_dataset(args.data)
    random.shuffle(data_json)

    training_set_ratio = 0.7
    training_set_size = int(training_set_ratio * len(data_json) + 0.5)

    training_set = data_json[:training_set_size]
    test_set = data_json[training_set_size:]

    processor = TextProcessor()
    classifier = Classifier(processor)
    classifier.train(training_set)

    print classifier.dump() == Classifier.load(classifier.dump(), processor).dump()
开发者ID:bernardorufino,项目名称:tg-articles,代码行数:18,代码来源:exp.py

示例12: test_classify_by_randomforest

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import train [as 别名]
def test_classify_by_randomforest():
    stock_d = testdata()
    ti = TechnicalIndicators(stock_d)

    filename = 'test_N225_randomforest.pickle'
    clffile = os.path.join(os.path.dirname(
                           os.path.abspath(__file__)),
                           '..', 'clf',
                           filename)

    if os.path.exists(clffile):
        os.remove(clffile)

    clf = Classifier(filename)
    ti.calc_ret_index()
    ret = ti.stock['ret_index']

    train_X, train_y = clf.train(ret, classifier="Random Forest")

    eq_(filename, os.path.basename(clf.filename))

    r = round(train_X[-1][-1], 5)
    expected = 1.35486
    eq_(r, expected)

    r = round(train_X[0][0], 5)
    expected = 1.08871
    eq_(r, expected)

    expected = 14
    r = len(train_X[0])
    eq_(r, expected)

    expected = 120
    r = len(train_X)
    eq_(r, expected)

    expected = [1, 0, 0, 0, 1, 1, 0, 0, 0, 0,
                0, 0, 1, 0, 0, 1, 0, 1, 0, 1,
                1, 0, 1, 1, 1, 1, 1, 0, 1, 0,
                1, 1, 1, 1, 0, 1, 0, 1, 1, 0,
                1, 0, 0, 1, 1, 1, 1, 1, 1, 1,
                0, 0, 0, 1, 0, 0, 1, 1, 1, 1,
                1, 0, 1, 0, 0, 0, 0, 0, 0, 1,
                1, 1, 0, 0, 1, 0, 1, 1, 0, 1,
                1, 0, 1, 1, 0, 1, 0, 0, 1, 0,
                1, 1, 0, 0, 1, 0, 1, 0, 1, 1,
                1, 1, 1, 0, 1, 1, 1, 0, 0, 1,
                1, 0, 0, 1, 1, 1, 0, 1, 1, 0]

    for r, e in zip(train_y, expected):
        eq_(r, e)

    expected = 1
    test_y = clf.classify(ret)
    assert(test_y[0] == 0 or test_y[0] == 1)

    if os.path.exists(clffile):
        os.remove(clffile)
开发者ID:MovingAverage,项目名称:finance,代码行数:61,代码来源:test_classifier.py

示例13: test_combinations

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import train [as 别名]
def test_combinations(args, graph=False):
    py = plotly.plotly(username='vierja', key='uzkqabvlzm', verbose=False)
    options = [100, 10, 0.9, 4, 0.05, 10000]
    features = ["skewness", "spectral_rolloff", "energy", "sv", "spread", "centroid", "zcr", "obsi", "kurtosis"]
    electronic_y = []
    classical_y = []
    categories = []

    print '\t'.join([feature[:2] for feature in features] + ["meta", "acou", "regg", "elec", "class"])

    for i in range(1, len(features) + 1):
        combinations = [list(comb) for comb in itertools.combinations(features, i)]
        for comb in combinations:
            comb_name = ', '.join(comb)
            classifier = Classifier(args['data'], discrete_intervals=options[0], size_rule_generation=options[1], filter_list=comb)
            top_fitness = classifier.train(req_min_fitness=options[2], gen_select=options[3], mutation_prob=options[4], limit_generations=options[5])
            for feature in features:
                if feature in comb:
                    sys.stdout.write("X\t")
                else:
                    sys.stdout.write("\t")
            sys.stdout.write(str(top_fitness['metal']["fitness"])[:4] + "\t")
            sys.stdout.write(str(top_fitness['acoustic']["fitness"])[:4] + "\t")
            sys.stdout.write(str(top_fitness['reggae']["fitness"])[:4] + "\t")
            sys.stdout.write(str(top_fitness['electronic']["fitness"])[:4] + "\t")
            sys.stdout.write(str(top_fitness['classical']["fitness"])[:4] + "\n")

            if graph:
                print "Training ended\nFinal fitness:", top_fitness
                electronic_y.append(top_fitness['metal'])
                classical_y.append(top_fitness['classical'])
                categories.append(comb_name)

                if len(categories) > 20:
                    electronic = {
                        "name": "Metal",
                        "x": categories,
                        "y": electronic_y,
                        "type": "bar"
                    }

                    classical = {
                        "name": "Classical",
                        "x": categories,
                        "y": classical_y,
                        "type": "bar"
                    }

                    layout = {
                        "barmode": "group",
                        'xaxis': {'type': 'combination'},
                        'catagories': categories
                    }
                    response = py.plot([electronic, classical], layout=layout)
                    print response['url']
                    electronic_y = []
                    classical_y = []
                    categories = []
开发者ID:vierja,项目名称:clasificacion-de-musica,代码行数:60,代码来源:main.py

示例14: _learn

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import train [as 别名]
        def _learn(sample):
            _extname = sample.get("extname")
            _filename = sample.get("filename")
            _langname = sample["language"]

            if _extname:
                db["extnames"][_langname] = db["extnames"].get(_langname, [])
                if _extname not in db["extnames"][_langname]:
                    db["extnames"][_langname].append(_extname)
                    db["extnames"][_langname].sort()

            if _filename:
                db["filenames"][_langname] = db["filenames"].get(_langname, [])
                db["filenames"][_langname].append(_filename)
                db["filenames"][_langname].sort()

            data = open(sample["path"]).read()
            Classifier.train(db, _langname, data)
开发者ID:xtao,项目名称:linguist,代码行数:20,代码来源:samples.py

示例15: trainJCfromSP

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import train [as 别名]
def trainJCfromSP():
    finalList = allArrays()
    def mapFunc(x):
        if x[1] == ".py" or x[1] == ".sml":
            listX = list(x)
            listX[1] = 1
            x = tuple(listX)
        else:
            listX = list(x)
            listX[1] = -1
            x = tuple(listX)
        return x
    dataList = []
    for x in finalList:
        dataList.append(mapFunc(x))
    random.shuffle(dataList)
    JCfromSP = Classifier(len(finalList[0][0]))
    JCfromSP.train(dataList, 0.05)
    return JCfromSP
开发者ID:rohany,项目名称:Language-Recognizer,代码行数:21,代码来源:trainer.py


注:本文中的classifier.Classifier.train方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。