当前位置: 首页>>代码示例>>Python>>正文


Python Classifier.load_model方法代码示例

本文整理汇总了Python中classifier.Classifier.load_model方法的典型用法代码示例。如果您正苦于以下问题:Python Classifier.load_model方法的具体用法?Python Classifier.load_model怎么用?Python Classifier.load_model使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在classifier.Classifier的用法示例。


在下文中一共展示了Classifier.load_model方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: EmojiRecommender

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import load_model [as 别名]
class EmojiRecommender():
	def __init__(self, fname_model, fname_embed, fname_dataset):
		print >> sys.stderr, 'EmojiRecommender: [info] loading word index...'
		self.windexer = WordIndexer.load(fname_embed)
	
		print >> sys.stderr, 'EmojiRecommender: [info] loading model...'		
		self.clf = Classifier()
		self.clf.load_model(fname_model)

		print >> sys.stderr, 'EmojiRecommender: [info] loading emojis...'
		ecode_split = cPickle.load(open(fname_dataset, 'r'))
		self.emojis = [emo for emo, split in ecode_split]

		self.ydim = len(self.emojis)

		print >> sys.stderr, 'EmojiRecommender: [info] initialization done'

	def preprocess(self, text):
		text = text.decode('utf8')
		seq = zhtokenizer.tokenize(text)
		idxs = self.windexer.seq2idx(seq)

		return idxs

	def predict_proba(self, text):
		idxs = self.preprocess(text)
		
		if len(idxs) == 0:
			return None
		else:
			return self.clf.predict_proba(idxs)

	def recommend(self, text, n = 5):
		proba = self.predict_proba(text)

		if proba is None:
			eids = [i for i in range(n)]
			scores = [0. for i in range(n)]
		else:
			ranks = [(i, proba[i]) for i in range(self.ydim)]
			ranks = sorted(ranks, key = lambda k:-k[1])

			eids = [ranks[i][0] for i in range(n)]
			scores = [ranks[i][1] for i in range(n)]

		res = [{'emoji':self.emojis[eid], 'score':'%.2f'%(score)} for eid, score in zip(eids, scores)]

		return res
开发者ID:liangxh,项目名称:emozh,代码行数:50,代码来源:recomia.py

示例2: confused_docs_to_file

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import load_model [as 别名]
            

def confused_docs_to_file(confused, file_name):
    with codecs.open(file_name, 'w', 'utf-8') as f:
        for c in confused:
            line = c[0]+' '+c[1]+' '+c[2]+'\n'
            f.write(line)
    
CONFUSED_MATRIX_POSTFIX = '_confusion_matrix.csv'
CONFUSED_POSTFIX = '_confused.txt'
CORRECT_POSTFIX = '_correct.txt'
CLASSIFIER_DATA_DIRECTORY = 'classifiers_data'

if __name__ == "__main__":
    c = Classifier()
    c.load_model(TRAINING_FILE_OUTPUT)
    test_file = TEST_FILE
    
    # Grab all test data from the file.
    test_data = []
    actual_class = []
    with codecs.open(test_file, 'r', 'utf-8') as f:
        for line in f:
            class_name, text = line.split('\t', 1)
            text = text.strip()
            token_list = []
            for token in token_iterator(text, TOKEN_PATTERN):
                token_list.append(token)
            test_data.append(token_list)
            actual_class.append(class_name)
    
开发者ID:craig8196,项目名称:classifier,代码行数:32,代码来源:test_classifier.py


注:本文中的classifier.Classifier.load_model方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。