当前位置: 首页>>代码示例>>Python>>正文


Python Classifier.test方法代码示例

本文整理汇总了Python中classifier.Classifier.test方法的典型用法代码示例。如果您正苦于以下问题:Python Classifier.test方法的具体用法?Python Classifier.test怎么用?Python Classifier.test使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在classifier.Classifier的用法示例。


在下文中一共展示了Classifier.test方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: run

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import test [as 别名]
    def run(self):
        """
        Function: Run
        -------------
        This function will evaluate your solution! You do not need to
        write any code in this file, however you SHOULD understand this
        function!
        """
        print "Running the full pipeline!"
        K=25
        trainImages = util.loadTrainImages()[:1000]
        testImages = util.loadTestImages()

        classifier = Classifier()

        print 'Training..........'
        classifier.train(trainImages, K)

        trainPredictions = classifier.test(trainImages)
        trainAccuracy = self.evaluate(trainPredictions, trainImages)

        print 'Testing...........'
        testPredictions = classifier.test(testImages)
        testAccuracy = self.evaluate(testPredictions, testImages)

        print 'All done. Here is your summary:'
        self.reportAccuracy(trainAccuracy, 'Train Accuracy')
        self.reportAccuracy(testAccuracy, 'Test Accuracy')
开发者ID:awni,项目名称:image_classifier,代码行数:30,代码来源:evaluator.py

示例2: runNeuralNetwork

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import test [as 别名]
def runNeuralNetwork(train, test, batchSize, classNum, hLayer=None, mode=None, momentumFactor=0.0):
    """
    A function that call the the classifier to train a learning model.
    Args:
        train: training examples (numpy)
        test: testing examples (numpy)
        batchSize: the number of training example for each iteration
        classNum: the number of classes
        hLayer: number of the hidden layer nodes (list)
        mode: weight initializing mode
        momentumFactor: momentum factor
    """
    print ""
    print "Neural Network =============================="
    print " - number of hidden layer nodes:",
    if hLayer is not None:
        print hLayer
    else:
        print " default (one hidden layer with node number = 2 * feature number)"

    print " - weight initialization mode:",
    if mode is not None:
        print mode
    else:
        print "default"

    print " - momentum factor", momentumFactor

    nn = Classifier("neural_network", hidden_layer=hLayer, weightInitMode=mode, momentumFactor=momentumFactor)
    nn.train(train, test, classNum, batchSize)
    nn.test(test, "test")
开发者ID:jasonlingo,项目名称:Machine-Learning-Assignments,代码行数:33,代码来源:main.py

示例3: main

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import test [as 别名]
def main():
    parser = argparse.ArgumentParser(description='Clasificador de musica.\nToma los datos de entrenamiento de un archivo y utiliza algoritmos evolutivos para crear y mejorar las reglas de clasificación.')
    parser.add_argument('-d', '--data', help='Archivo donde se encuentra la información fuente para el clasificador.')
    args = vars(parser.parse_args())

    """
    Los valores default son:
        tamaño discretizacion - 100
        poblacion de generacion - 10
        min fitness para terminar - 0.9
        numero a seleccionar - 4
        porcentaje de mutacion - 0.05
        maximo de generaciones - 10000
        tipo de seleccion - ROULETTE_WHEEL_SELECTION
    """
    defaults = [100, 10, 0.9, 4, 0.05, 10000, selection.ROULETTE_WHEEL_SELECTION]

    classifier = Classifier(args['data'], discrete_intervals=defaults[0], size_rule_generation=defaults[1], filter_list=["skewness", "spectral_rolloff", "energy", "sv", "spread", "centroid", "obsi", "kurtosis"], log_results=True)
    start = time.clock()
    best_results = classifier.train(req_min_fitness=defaults[2], gen_select=defaults[3], mutation_prob=defaults[4], limit_generations=defaults[5])
    duration = (time.clock() - start)*1000
    print "Duration\t", duration, "ms"
    print "Training endend."
    print "Best results:", ', '.join([str(key) + " fitness: " + str(value['fitness']) for key, value in best_results.items()])
    print "Testing:"
    classifier.test()
    print "Testing ended."
开发者ID:vierja,项目名称:clasificacion-de-musica,代码行数:29,代码来源:main.py

示例4: main

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import test [as 别名]
def main(c = "decision_tree", option = "IG", dataset = "iris", ratio = 0.8):

	classifier_types = {0: "decision_tree", 1: "naive_bayes", 2: "neural_net"}
	options = {0:["IG", "IGR"], 1:["normal"], 2:["shallow", "medium"]}

	ratio = float(ratio)

	if dataset == "monks":
		(training, test) = load_data.load_monks(ratio)
	elif dataset == "congress":
		(training, test) = load_data.load_congress_data(ratio)
	elif dataset == "iris":
		(training, test) = load_data.load_iris(ratio)
	else:
		print "Error: Cannot find dataset name."
		return

	print "Training... Please hold."
	# classifier_types = {0: "decision_tree", 2: "neural_net"}
	# options = {0:["IG", "IGR"], 2:["shallow", "medium"]}
	# (training, test) = load_data.load_iris(0.8)
	# nn_classifier = Classifier(classifier_type="neural_net", option = "medium")
	# nn_classifier.train(training)
	# nn_classifier.test(test)

	# print test
	# (training, test) = load_data.load_congress_data(0.8)
	# print test
	# (training, test) = load_data.load_monks(1)
	# print test	

	# (training, test) = load_data.load_iris(0.8)
	# print training
	# "option = IG/IGR"
	# dt_classifier = Classifier(classifier_type="decision_tree", weights=[], option="IG")
	# dt_classifier.train(training)
	# dt_classifier.test(test)
	# for i, c in classifier_types.iteritems():
	# 	for option in options[i]:
	print "                                                                 "
	print "================================================================="
	print "Dataset    = ", dataset
	print "Classifier = ", c
	print "Option     = ", option
	classifier = Classifier(classifier_type=c, weights = [], option = option)
	classifier.train(training)
	classifier.test(test)
	print "================================================================="
	print "                                                                 "
	# option value could be either shallow(3 layers) or medium(5)
	# nn_classifier = Classifier(classifier_type="neural_net", option = "medium")
	# nn_classifier.train(training)
	# nn_classifier.test(test)
	return 
开发者ID:lb5160482,项目名称:Machine-Learning-Classifier-Artificial-Intelligence,代码行数:56,代码来源:train_and_test.py

示例5: trainNtest

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import test [as 别名]
def trainNtest(args):
    classifierType = ["decision_tree", "naive_bayes", "neural_network"]
    data_set = ["congress", "monk", "iris"]

    
    data = ""
    if len(args) == 4:
        if args[0][3:] == "congress":
            data = ld.load_congress_data(int(args[1][3:]) / 100.0)
            num_input = 16
            num_output = 2 
        elif args[0][3:] == "monk":
            data = ld.load_monks(int(args[1]))
            num_input = 6
            num_output = 2 
        elif args[0][3:] == "iris":
            data = ld.load_iris(int(args[1][3:]) / 100.0)
            num_input = 4
            num_output = 3
        else:
            print "INVALID DATA NAME"
            return
        method_num = int(args[2][3])
        kwargs = {}
        if method_num == 0 or method_num == 2:
            kwargs[1] = args[2][5]
            kwargs[2] = args[2][7]
            classifier = Classifier(classifierType[int(args[2][3])], one=args[2][5], two=args[2][7], num_input=num_input, num_output=num_output)
        else:
            classifier = Classifier(classifierType[int(args[2][3])])
    else:
        print "ERROR: NEED 4 PARAMETERS"
        return 


    #pdb.set_trace()
    #nb = Naive_Bayes("naive_bayes")

    #classifier = Classifier(classifierType[1])
    #data = ld.load_congress_data(.85)

    #data = ld.load_iris(.70)

    #pdb.set_trace()

    classifier.train(data[0])


    if args[3] == "-test":
        classifier.test(data[1])
    else:
        classifier.test(data[0])
开发者ID:azpoliak,项目名称:ai_homework4,代码行数:54,代码来源:train_and_test.py

示例6: test

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import test [as 别名]
def test(args):
    test_performance(args, 5)
    return
    #return
    options = [
        [100, 10, 0.9, 4, 0.05, 10000, selection.ROULETTE_WHEEL_SELECTION],  # discrete_intervals, size_rule_generation, req_min_fitness, gen_select, limit_generations
        [1000, 10, 0.9, 4, 0.05, 10000, selection.ROULETTE_WHEEL_SELECTION],
        [100, 20, 0.9, 4, 0.05, 10000, selection.ROULETTE_WHEEL_SELECTION],
        [100, 5, 0.9, 2, 0.05, 10000, selection.ROULETTE_WHEEL_SELECTION],
        [100, 10, 0.9, 2, 0.05, 10000, selection.ROULETTE_WHEEL_SELECTION],
        [100, 10, 0.9, 6, 0.05, 10000, selection.ROULETTE_WHEEL_SELECTION],
        [200, 50, 0.9, 10, 0.05, 10000, selection.ROULETTE_WHEEL_SELECTION],
        [300, 10, 0.9, 4, 0.1, 10000, selection.ROULETTE_WHEEL_SELECTION],
        [500, 15, 0.9, 2, 0.005, 10000, selection.ROULETTE_WHEEL_SELECTION],
        [50, 20, 0.9, 4, 0.1, 10000, selection.ROULETTE_WHEEL_SELECTION]
    ]

    #prueba Tamaño de población
    options = [
        [100, 5, 0.9, 2, 0.05, 10000, selection.ROULETTE_WHEEL_SELECTION],
        [100, 10, 0.9, 2, 0.05, 10000, selection.ROULETTE_WHEEL_SELECTION],
        [100, 15, 0.9, 2, 0.05, 10000, selection.ROULETTE_WHEEL_SELECTION],
        [100, 20, 0.9, 2, 0.05, 10000, selection.ROULETTE_WHEEL_SELECTION],
        [100, 30, 0.9, 2, 0.05, 10000, selection.ROULETTE_WHEEL_SELECTION],
        [100, 50, 0.9, 2, 0.05, 10000, selection.ROULETTE_WHEEL_SELECTION]
    ]

    #prueba Proceso de seleccion
    options = [
        [100, 10, 0.9, 2, 0.05, 10000, selection.ROULETTE_WHEEL_SELECTION],
        [100, 10, 0.9, 2, 0.05, 10000, selection.RANK_SELECTION],
        [100, 10, 0.9, 2, 0.05, 10000, selection.TOURNAMENT_SELECTION]
    ]

    options = [
        [100, 10, 0.9, 2, 0.05, 10000, selection.ROULETTE_WHEEL_SELECTION],
    ]

    average_multiple_runs(30, options, args)

    test_combinations(args)

    for num, option in enumerate(options):
        print "Option num:", num, ", val:", option
        classifier = Classifier(args['data'], discrete_intervals=option[0], size_rule_generation=option[1], filter_list=["skewness", "spectral_rolloff", "energy", "sv", "spread", "centroid", "obsi", "kurtosis"], log_results=True)
        best_results = classifier.train(req_min_fitness=option[2], gen_select=option[3], mutation_prob=option[4], limit_generations=option[5])
        print "Testing"
        classifier.test()
        # classifier.guess_genre([7.53659769442,1389.49121537,0.0166588959174,0.355062895642,1480.75635175,769.172547276,3.47303203307,69.8220939453])
        print "Training ended\nFinal fitness:", best_results
开发者ID:vierja,项目名称:clasificacion-de-musica,代码行数:52,代码来源:main.py

示例7: average_multiple_runs

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import test [as 别名]
def average_multiple_runs(num_runs, options, args):
    for num, option in enumerate(options):
        print "Running", num_runs, "iterations with options:", option
        list_best_results = []
        list_test_results = []
        list_correct_results = []
        for i in range(num_runs):
            print "Running #" + str(i + 1)
            classifier = Classifier(args['data'], discrete_intervals=option[0], size_rule_generation=option[1], filter_list=["skewness", "spectral_rolloff", "energy", "sv", "spread", "centroid", "obsi", "kurtosis"], log_results=False)
            best_results = classifier.train(req_min_fitness=option[2], gen_select=option[3], mutation_prob=option[4], limit_generations=option[5], selection_type=option[6])
            test_results, correct_results = classifier.test()
            list_best_results.append(best_results)
            list_test_results.append(test_results)
            list_correct_results.append(correct_results)
        print "Results for option: ", option
        print "run\ttype\tgen\tfitness"
        for i, results in enumerate(list_best_results):
            for rule, result in results.items():
                print str(i + 1) + "\t" + rule[:7] + "\t" + str(result["generation"]) + "\t" + str(result["fitness"])

        print "run\ttype\tavg correct rules"
        for i, results in enumerate(list_test_results):
            for avg_map in results:
                print str(i + 1) + "\t" + avg_map.keys()[0][:7] + "\t" + str(avg_map[avg_map.keys()[0]])

        print "run\ttype\tavg correct results"
        for i, results in enumerate(list_correct_results):
            for avg_map in results:
                print str(i + 1) + "\t" + avg_map.keys()[0][:7] + "\t" + str(avg_map[avg_map.keys()[0]])
开发者ID:vierja,项目名称:clasificacion-de-musica,代码行数:31,代码来源:main.py

示例8: run

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import test [as 别名]
    def run(self):
        print "Running the full pipeline!"
        K=25
        trainImages = util.loadTrainImages()[:1000]
        testImages = util.loadTestImages()

        classifier = Classifier()

        print 'Training..........'
        classifier.train(trainImages, K)

        trainPredictions = classifier.test(trainImages)
        trainAccuracy = self.evaluate(trainPredictions, trainImages)

        print 'Testing...........'
        testPredictions = classifier.test(testImages)
        testAccuracy = self.evaluate(testPredictions, testImages)

        print 'All done. Here is your summary:'
        self.reportAccuracy(trainAccuracy, 'Train Accuracy')
        self.reportAccuracy(testAccuracy, 'Test Accuracy')
开发者ID:howpenghui,项目名称:visualCortex,代码行数:23,代码来源:evaluator.py

示例9: runDev

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import test [as 别名]
    def runDev(self):
        print "Running in development mode"

        K=5
        trainImages = util.loadTrainImages()[:100]
        testImages = util.loadTestImages()[:100]
        
        classifier = Classifier()
        
        print 'Training..........'
        classifier.train(trainImages, K)
        trainPredictions = classifier.test(trainImages)
        trainAccuracy = self.evaluate(trainPredictions, trainImages)

        print 'All done. Here is your summary:'
        self.reportAccuracy(trainAccuracy, 'Train Accuracy')
开发者ID:howpenghui,项目名称:visualCortex,代码行数:18,代码来源:evaluator.py

示例10: runDev

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import test [as 别名]
    def runDev(self):
        """
        Function: runDev
        -------------
        This function will run the full pipeline in development mode.
        I.e. it will use only 10 centroids and 100 images.
        """
        print "Running in development mode"

        K=5
        trainImages = util.loadTrainImages()[:100]
        testImages = util.loadTestImages()[:100]
        
        classifier = Classifier()
        
        print 'Training..........'
        classifier.train(trainImages, K)
        trainPredictions = classifier.test(trainImages)
        trainAccuracy = self.evaluate(trainPredictions, trainImages)

        print 'All done. Here is your summary:'
        self.reportAccuracy(trainAccuracy, 'Train Accuracy')
开发者ID:awni,项目名称:image_classifier,代码行数:24,代码来源:evaluator.py

示例11: main

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import test [as 别名]
def main(is_interactive=True, k=64, des_option=constants.ORB_FEAT_OPTION, svm_kernel=cv2.SVM_LINEAR):
    if not is_interactive:
        experiment_start = time.time()
    # Check for the dataset of images
    if not os.path.exists(constants.DATASET_PATH):
        print("Dataset not found, please copy one.")
        return
    dataset = Dataset(constants.DATASET_PATH)
    dataset.generate_sets()

    # Check for the directory where stores generated files
    if not os.path.exists(constants.FILES_DIR_NAME):
        os.makedirs(constants.FILES_DIR_NAME)

    if is_interactive:
        des_option = input("Enter [1] for using ORB features or [2] to use SIFT features.\n")
        k = input("Enter the number of cluster centers you want for the codebook.\n")
        svm_option = input("Enter [1] for using SVM kernel Linear or [2] to use RBF.\n")
        svm_kernel = cv2.SVM_LINEAR if svm_option == 1 else cv2.SVM_RBF

    des_name = constants.ORB_FEAT_NAME if des_option == constants.ORB_FEAT_OPTION else constants.SIFT_FEAT_NAME

    log = Log(k, des_name, svm_kernel)

    codebook_filename = filenames.codebook(k, des_name)
    if is_interactive:
        codebook_option = input("Enter [1] for generating a new codebook or [2] to load one.\n")
    else:
        codebook_option = constants.GENERATE_OPTION
    if codebook_option == constants.GENERATE_OPTION:
        # Calculate all the training descriptors to generate the codebook
        start = time.time()
        des = descriptors.all_descriptors(dataset, dataset.get_train_set(), des_option)
        end = time.time()
        log.train_des_time(end - start)
        # Generates the codebook using K Means
        print("Generating a codebook using K-Means with k={0}".format(k))
        start = time.time()
        codebook = descriptors.gen_codebook(dataset, des, k)
        end = time.time()
        log.codebook_time(end - start)
        # Stores the codebook in a file
        utils.save(codebook_filename, codebook)
        print("Codebook saved in {0}".format(codebook_filename))
    else:
        # Load a codebook from a file
        print("Loading codebook ...")
        codebook = utils.load(codebook_filename)
        print("Codebook with shape = {0} loaded.".format(codebook.shape))

    # Train and test the dataset
    classifier = Classifier(dataset, log)
    svm = classifier.train(svm_kernel, codebook, des_option=des_option, is_interactive=is_interactive)
    print("Training ready. Now beginning with testing")
    result, labels = classifier.test(codebook, svm, des_option=des_option, is_interactive=is_interactive)

    # Store the results from the test
    classes = dataset.get_classes()
    log.classes(classes)
    log.classes_counts(dataset.get_classes_counts())
    result_filename = filenames.result(k, des_name, svm_kernel)
    test_count = len(dataset.get_test_set()[0])
    result_matrix = np.reshape(result, (len(classes), test_count))
    utils.save_csv(result_filename, result_matrix)

    # Create a confusion matrix
    confusion_matrix = np.zeros((len(classes), len(classes)), dtype=np.uint32)
    for i in range(len(result)):
        predicted_id = int(result[i])
        real_id = int(labels[i])
        confusion_matrix[real_id][predicted_id] += 1

    print("Confusion Matrix =\n{0}".format(confusion_matrix))
    log.confusion_matrix(confusion_matrix)
    log.save()
    print("Log saved on {0}.".format(filenames.log(k, des_name, svm_kernel)))
    if not is_interactive:
        experiment_end = time.time()
        elapsed_time = utils.humanize_time(experiment_end - experiment_start)
        print("Total time during the experiment was {0}".format(elapsed_time))
    else:
        # Show a plot of the confusion matrix on interactive mode
        utils.show_conf_mat(confusion_matrix)
        raw_input("Press [Enter] to exit ...")
开发者ID:HenrYxZ,项目名称:object-classification,代码行数:86,代码来源:main.py

示例12: Classifier

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import test [as 别名]
# classifier = Classifier(c, feature_set)
# classifier.plot_performance()
# classifier.plot_performnace_ngram(limit=6)
# classifier.train()
# classifier.test()

i = 0.2
accuracies = []
fscores = []
cs = []
while i <= 5:
    c = SklearnClassifier(Pipeline([('clf', LinearSVC(C=i))]))
    classifier = Classifier(c, feature_set)
    classifier.train()
    accuracy, fscore = classifier.test()
    accuracies.append(accuracy)
    fscores.append(fscore)
    cs.append(i)
    i += 0.2
    print i

plt.plot(cs, accuracies, label='Accuracy', linewidth=2)
plt.plot(cs, fscores, label='F1-score', linewidth=2)
plt.xlabel('C')
plt.legend(loc='lower right')
plt.show()

t = 'a'
while t != '':
    t = raw_input('>')
开发者ID:kiellabian,项目名称:samaritan,代码行数:32,代码来源:tester.py


注:本文中的classifier.Classifier.test方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。