当前位置: 首页>>代码示例>>Python>>正文


Python Classifier.predict方法代码示例

本文整理汇总了Python中classifier.Classifier.predict方法的典型用法代码示例。如果您正苦于以下问题:Python Classifier.predict方法的具体用法?Python Classifier.predict怎么用?Python Classifier.predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在classifier.Classifier的用法示例。


在下文中一共展示了Classifier.predict方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: GetNewArticles

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import predict [as 别名]
def GetNewArticles(request):
    # Get the articles from RSS
    # aggregator = NewsAggregator()
    # list_of_articles = aggregator.feedreader()
    classifier = Classifier("filename.pkl")
    # Predict
    list_of_classes = []
    # with open("articles_dump", "wb") as dump:
    #     pickle.dump(list_of_articles, dump, pickle.HIGHEST_PROTOCOL)
    with open("articles_dump") as dump:
        list_of_articles = pickle.load(dump)
    for article in list_of_articles:
        list_of_classes.append(article["content"])
    # print list_of_classes
    res = classifier.predict(np.asarray(list_of_classes))

    for i in range(0, len(list_of_articles)):
        if res[i] == 1:
            cat = "Sports"
        elif res[i] == 2:
            cat = "Economy_business_finance"
        elif res[i] == 3:
            cat = "Science_technology"
        else:
            cat = "Lifestyle_leisure"
        element = list_of_articles[i]
        list_of_articles[i]["category"] = cat
        article = Article(article_title=element["title"], article_content=element["content"], article_category=cat)
        article.save()
    json_object = json.dumps(list_of_articles)
    return HttpResponse(json_object)
开发者ID:saurabhsood91,项目名称:newsClassification,代码行数:33,代码来源:views.py

示例2: __init__

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import predict [as 别名]
class Subscriber:
    def __init__(self, pool_size=10):
        socket.setdefaulttimeout(3)
        self.pool = threadpool.ThreadPool(pool_size)
        self.documents = MongoClient().rss.documents
        self.classifier = Classifier()

    def consume(self, line):
        try:
            feeder = feedparser.parse(line)
            if "title" in feeder.feed.keys():
                site_title = feeder.feed["title"]
            else:
                site_title = u"No title found"
            for entry in feeder.entries:
                doc = {"site_url": line, "site_title": unicode(site_title)}
                for item in [
                    "title",
                    "link",
                    "summary",
                    "content",
                    "published_parsed",
                    "tags",
                    "author",
                    "summary_detail",
                ]:
                    if item in entry.keys():
                        doc[item] = entry[item]

                doc["published_parsed"] = datetime.fromtimestamp(mktime(doc["published_parsed"]))

                if "content" not in doc.keys():
                    doc["content"] = doc["summary"]
                else:
                    doc["content"] = doc["content"][0]["value"]
                print doc["title"].encode("utf8")

                if self.documents.find({"link": doc["link"]}).count() == 0:
                    try:
                        doc["category"] = self.classifier.predict(BeautifulSoup(doc["content"]).text)
                        print doc["category"]
                    except Exception, e:
                        print e
                    self.documents.insert(doc)
                    print doc["title"].encode("utf8")
        except Exception, e:
            print e
开发者ID:darlinglele,项目名称:portal,代码行数:49,代码来源:run_subscribe.py

示例3: run_iteration

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import predict [as 别名]
def run_iteration(iteration, hash_map):
    lbp = LocalBinaryPatterns(24, 8)
    data = []
    labels = []

    #Finding all images
    images = [os.path.join(root, name) for root, dirs, files in os.walk("../training_images")
            for name in files if name.endswith((".jpeg", ".jpg"))]

    #Spliting it into training and testing groups
    training, testing = train_test_split(images, test_size = 0.25)

    #Training Phase
    for imagePath in training:
      #Load the image, convert it to grayscale, and compute LBP
      image = cv2.imread(imagePath)
      gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
      if imagePath in hash_map:
        hist = hash_map[imagePath]
      else:
        hist = lbp.compute(gray)
        hash_map[imagePath] = hist

      print str(iteration) + " DEBUG(Training): Computed LBP Histogram for " + imagePath

      #Plotting histogram if needed
      #plt.bar(bin_edges[:-1], hist, width = 1)
      #plt.xlim(min(bin_edges), max(bin_edges))
      #plt.show()

      #Extract the label from the image path, then update the label and data lists
      labels.append(imagePath.split("/")[-2])
      data.append(hist)

    #Train classifier
    classifier = Classifier("SVM")
    print "\n\n" + str(iteration) + " DEBUG: Training Classifier"
    classifier.train(data, labels)
    print "\n\n" + str(iteration) + " DEBUG: Trained Classifier\n\n"

    #Testing Phase
    data = []
    labels = []
    for imagePath in testing:
      #Load the image, convert to grayscale, describe it and classify it
      image = cv2.imread(imagePath)
      gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
      if imagePath in hash_map:
        hist = hash_map[imagePath]
      else:
        hist = lbp.compute(gray)
        hash_map[imagePath] = hist

      print str(iteration) + " DEBUG(Testing): Computed LBP Histogram for " + imagePath

      data.append(hist)
      labels.append(imagePath.split("/")[-2])

    print "\n\n" + str(iteration) + " DEBUG: Forming predictions"
    predictions = classifier.predict(data)
    counter = 0
    print "\n\n" + str(iteration) + " DEBUG: Printing predictions\n\n"
    for index, prediction in enumerate(predictions):
        print "Name -> " + testing[index] + " Actual -> " + labels[index] + " Prediction -> " + prediction
        if labels[index] == prediction:
            counter = counter + 1

    accuracy = (float(counter)/float(len(predictions))) * 100.0
    print "\n\n" + str(iteration) + " The Classifier Accuracy was " + str(accuracy) + "%"

    return accuracy
开发者ID:kevin-george,项目名称:surface-characterization,代码行数:73,代码来源:main_lbp_svm.py

示例4: Classifier

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import predict [as 别名]
for imagePath in training:
  #Load the image, convert it to grayscale, and compute LBP
  image = cv2.imread(imagePath)
  gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
  hist = lbp.compute(gray)

  #Extract the label from the image path, then update the label and data lists
  labels.append(imagePath.split("/")[-2])
  data.append(hist)


#Train classifier
classifier = Classifier("Chi-Squared")
classifier.train(data, labels)

#Testing Phase
data = []
testing = [os.path.join(root, name) for root, dirs, files in os.walk("../testing_images")
        for name in files if name.endswith((".jpeg", ".jpg"))]

for imagePath in testing:
  #Load the image, convert to grayscale, describe it and classify it
  image = cv2.imread(imagePath)
  gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
  hist = lbp.compute(gray)
  data.append(hist)

predictions = classifier.predict(data)
for index, prediction in enumerate(predictions):
    print "Name -> " + testing[index] + " Prediction -> " + prediction
开发者ID:kevin-george,项目名称:surface-characterization,代码行数:32,代码来源:main_chi_squared_test_image.py

示例5: Classifier

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import predict [as 别名]
from classifier import Classifier
import kernel
import numpy as np

X = [
  np.array([1, 1]),
  np.array([1, 2]),
  np.array([2, 1]),
  np.array([2, 2]),
  np.array([3, 3]),
  np.array([3, 4]),
  np.array([4, 3]),
  np.array([4, 4])
]

Y = np.array([
    'bottom', 'bottom', 'bottom', 'bottom',
    'top', 'top', 'top', 'top'
])

svm_classifier = Classifier(X, Y)

print svm_classifier.w
print svm_classifier.bias
for x in X:
  print svm_classifier.predict(x)
开发者ID:austinsherron,项目名称:CS-175-AI-Project,代码行数:28,代码来源:run.py

示例6: int

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import predict [as 别名]
import sys
from pic import Pic
from classifier import Classifier
from score import error

limit = int(sys.argv[1])
half = limit/2
data, targets = Pic.data(limit)
data = Pic.flatten(data)
data, cv_data = data[:half], data[half:]
targets, cv_targets = targets[:half], targets[half:]
preds = Classifier.predict(data, targets, data)
print error(preds, cv_targets)
#print preds
#print cv_targets
开发者ID:pmiller10,项目名称:catsvsdogs,代码行数:17,代码来源:catsvsdogs.py

示例7: SklearnClassifier

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import predict [as 别名]
# classifier.test()

i = 0.2
accuracies = []
fscores = []
cs = []
while i <= 5:
    c = SklearnClassifier(Pipeline([('clf', LinearSVC(C=i))]))
    classifier = Classifier(c, feature_set)
    classifier.train()
    accuracy, fscore = classifier.test()
    accuracies.append(accuracy)
    fscores.append(fscore)
    cs.append(i)
    i += 0.2
    print i

plt.plot(cs, accuracies, label='Accuracy', linewidth=2)
plt.plot(cs, fscores, label='F1-score', linewidth=2)
plt.xlabel('C')
plt.legend(loc='lower right')
plt.show()

t = 'a'
while t != '':
    t = raw_input('>')
    if t:
        tags = tag_text(t)
        features = dataset.__convern_to_count_dictionary(tags, n_gram=n)
        classifier.predict(features)
开发者ID:kiellabian,项目名称:samaritan,代码行数:32,代码来源:tester.py

示例8: Classifier

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import predict [as 别名]
import pickle
from scipy import io
from scipy.sparse import csr_matrix
import numpy
from classifier import Classifier

c = Classifier('../data/sl_data/value_func_model.bst', '../data/sl_data/value_func_X_encoders.pickle', '../data/sl_data/value_func_cats.pickle', '../data/sl_data/value_func_Y_encoder.pickle', value_function=True)
X = io.mmread('../data/sl_data/value_func_features.csv.mtx')
X = X.tocsc()
print c.predict(X[0:50, :])
if c.value_function:
    print numpy.round(c.predict(X[0:50, :]))
else:
    print c.target_label_encoder.inverse_transform(numpy.argmax(c.predict(X[0:50, :]), axis=1))
开发者ID:smurching,项目名称:pokemon_ai,代码行数:16,代码来源:classifier_example.py

示例9: partyprograms

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import predict [as 别名]
def partyprograms(folder='model'):
    clf = Classifier(folder=folder)
    # converted with pdftotext
    text = {}
    bow = {}
    # from https://www.spd.de/linkableblob/96686/data/20130415_regierungsprogramm_2013_2017.pdf
    txt = open(folder+'/textdata/SPD_programm.txt').read()
    # remove page footer 
    txt = re.sub(r'\W+Das Regierungsprogramm 2013 – 2017\W+\d+\W+','\n',txt)
    # split in sections
    txt = re.split('\n(IX|IV|V?I{0,3}\.\d? )',txt)
    text['spd'] = txt

    # from http://www.cdu.de/sites/default/files/media/dokumente/regierungsprogramm-2013-2017-langfassung-20130911.pdf
    txt = open(folder+'/textdata/CDU_programm.txt').read()
    # remove page footer 
    txt = re.sub(r'\W+Gemeinsam erfolgreich für Deutschland | Regierungsprogramm 2013 – 2017\W+','\n',txt)
    # remove page numbers
    txt = re.sub(r'\n\d+\n',' ',txt)
    # get sections
    txt = re.split(r'\n\d\.\d?\W',txt)
    # remove sections without proper text
    txt = [t for t in txt if len(t)>1000]
    text['cdu'] = txt

    # from https://www.die-linke.de/fileadmin/download/wahlen2013/bundestagswahlprogramm/bundestagswahlprogramm2013_langfassung.pdf
    txt = open(folder+'/textdata/LINKE_programm.txt').read()
    # remove page numbers
    txt = re.sub(r'\n\d+\n',' ',txt)
    # get sections
    txt = re.split('\n\n+',txt)
    # remove sections without proper text
    txt = [t for t in txt if len(t)>1000]
    text['linke'] = txt


    # from http://www.gruene.de/fileadmin/user_upload/Dokumente/Wahlprogramm/Wahlprogramm-barrierefrei.pdf
    txt = open(folder+'/textdata/GRUENE_programm.txt').read()
    # remove page footer 
    txt = re.sub(r'(\d+)?\W+Bundestagswahlprogramm 2013\nBündnis 90/Die Grünen\W+\d?\n','\n',txt)
    txt = re.sub(r'Teilhaben. Einmischen. Zukunft schaffen.','',txt)
    txt = re.sub(r'Zeit für den grünen Wandel','',txt)
    # remove page numbers
    txt = re.sub(r'\n\d+\n',' ',txt)
    # get sections
    txt = re.split(r'\n\d\.\d?\W',txt)
    # remove sections without proper text
    txt = [t for t in txt if len(t)>1000]
    text['gruene'] = txt
    
    json.dump(text,open(folder+'/textdata/programs.json', 'wb'),ensure_ascii=False)
    predictions,predictions_total = dict(),dict()
    Ytrue, Yhat = [],[]
    for key in text.keys():
        predictions[key] = []
        # for each paragraph separately
        for paragraph in text[key]:
            prediction = clf.predict(paragraph)['prediction']
            idx = argmax([x['probability'] for x in prediction])
            Yhat.append(text.keys().index(prediction[idx]['party']))
            predictions[key].append(prediction)
        #predictions[key] = map(lambda x: clf.predict(x)['prediction'],text[key])
        # for the entire program at once
        predictions_total[key] = clf.predict(' '.join(text[key]))['prediction']
        Ytrue.extend(ones(len(text[key]))*text.keys().index(key))
        
    print(confusion_matrix(Ytrue,Yhat))
    print(classification_report(Ytrue,Yhat,target_names=text.keys()))

    json.dump(predictions,open(folder+'/textdata/predictions.json','wb'),ensure_ascii=False)
    json.dump(predictions_total,open(folder+'/textdata/predictions_total.json','wb'),ensure_ascii=False)
开发者ID:christinakraus,项目名称:political-affiliation-prediction,代码行数:73,代码来源:partyprograms.py

示例10: multicategories_predict

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import predict [as 别名]
def multicategories_predict(samples_test, model_name, result_dir):
    if model_name is None or len(model_name) == 0:
        logging.warn(Logger.warn("model_name must not be NULL."))
        return

    if result_dir is None:
        cfm_file = "%s.cfm" % (model_name)
        sfm_file = "%s.sfm" % (model_name)
    else:
        if not os.path.isdir(result_dir):
            try:
                os.mkdir(result_dir)
            except OSError:
                logging.error(Logger.error("mkdir %s failed." % (result_dir)))
                return
        cfm_file = "%s/%s.cfm" % (result_dir, model_name)
        sfm_file = "%s/%s.sfm" % (result_dir, model_name)

    logging.debug(Logger.error("Loading train sample feature matrix ..."))
    sfm_train = SampleFeatureMatrix()
    sfm_train.load(sfm_file)
    logging.debug(Logger.debug("Loading train category feature matrix ..."))
    cfm_train = CategoryFeatureMatrix()
    cfm_train.load(cfm_file)

    logging.debug(Logger.debug("Making sample feature matrix for test data ..."))
    category_id = 2000000
    sfm_test = SampleFeatureMatrix(sfm_train.get_category_id_map(), sfm_train.get_feature_id_map())

    features = cfm_train.get_features(category_id)

    for sample_id in samples_test.tsm.sample_matrix():
        (sample_category, sample_terms, term_map) = samples_test.tsm.get_sample_row(sample_id)

        category_1_id = Categories.get_category_1_id(sample_category)

        sfm_test.set_sample_category(sample_id, category_1_id)
        for feature_id in features:
            if feature_id in term_map:
                feature_weight = features[feature_id]
                sfm_test.add_sample_feature(sample_id, feature_id, feature_weight)

    logging.debug(Logger.debug("train sample feature matrix - features:%d categories:%d" % (sfm_train.get_num_features(), sfm_train.get_num_categories())))
    X_train, y_train = sfm_train.to_sklearn_data()

    logging.debug(Logger.debug("test sample feature matrix - features:%d categories:%d" % (sfm_test.get_num_features(), sfm_test.get_num_categories())))
    X_test, y_test = sfm_test.to_sklearn_data()

    clf = Classifier()

    logging.debug(Logger.debug("Classifier training ..."))
    clf.train(X_train, y_train)

    logging.debug(Logger.debug("Classifier predicting ..."))

    categories = samples_test.get_categories()

    categories_1_names = []

    categories_1_idx_map = {}
    categories_1_idlist = categories.get_categories_1_idlist()
    for category_id in categories_1_idlist:
        category_idx = sfm_test.get_category_idx(category_id)
        category_name = categories.get_category_name(category_id)
        categories_1_idx_map[category_idx] = (category_id, category_name)
    categories_1_idx_list = sorted_dict(categories_1_idx_map)
    for (category_idx, (category_id, category_name)) in categories_1_idx_list:
        categories_1_names.append("%s(%d)" % (category_name, category_id))

    clf.predict(X_test, y_test, categories_1_names)
开发者ID:uukuguy,项目名称:digger,代码行数:72,代码来源:mc_learning.py


注:本文中的classifier.Classifier.predict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。