当前位置: 首页>>代码示例>>Python>>正文


Python Classifier.classify方法代码示例

本文整理汇总了Python中classifier.Classifier.classify方法的典型用法代码示例。如果您正苦于以下问题:Python Classifier.classify方法的具体用法?Python Classifier.classify怎么用?Python Classifier.classify使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在classifier.Classifier的用法示例。


在下文中一共展示了Classifier.classify方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_classify

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import classify [as 别名]
def test_classify():

    proxy = ReviewsMongoProxy("tripadvisor_train")
    review = proxy.find_review_by_id(proxy.next_random_review_id())

    classifier = Classifier("../tripadvisor/aspect_nltk_nb.pkl")
    classifier.classify(review)

    print_review(review)
开发者ID:stasi009,项目名称:OpinionMining728,代码行数:11,代码来源:tests.py

示例2: cl_button_clicked_cb

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import classify [as 别名]
 def cl_button_clicked_cb(self, button):
     """Classify button callback
     :param button: signal came from this button
     """
     if not len(self.sel_files):
         return
     self.counter = -1
     for row in self.sel_files:
         Classifier.classify(self.all_files[row], MainWindow.SR, row, self.update_classify_progress_cb)
开发者ID:qwertzdenek,项目名称:mtagger,代码行数:11,代码来源:main_window.py

示例3: classify

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import classify [as 别名]
    def classify(info_hash):
        conn = Database.get_conn()
        c = conn.cursor()

        try:
            c.execute('''
                SELECT name, info_hash, perm_category FROM torrents WHERE info_hash = {0}
            '''.format(Database._placeholder), (info_hash,))
            torrent = c.fetchone()

            c.execute('''
                SELECT path, size FROM files WHERE info_hash = {0}
            '''.format(Database._placeholder), (info_hash,))
            files = c.fetchall()

            category, tags = Classifier.classify(torrent[0], files, torrent[2])

            c.execute('''
                UPDATE torrents SET category = {0}, tags = {0}, classifier_version = {0} WHERE info_hash = {0}
            '''.format(Database._placeholder), (category, json.dumps(tags), Classifier.version, info_hash,))

            Database.logger.debug("Classified: (%s)(%s)" % (info_hash,torrent[0]))

            try:
                conn.commit()
            except:
                Database.logger.critical("Failed to commit to db")
        except:
            raise

        conn.close()
开发者ID:jacobzelek,项目名称:BitTroll,代码行数:33,代码来源:database.py

示例4: main

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import classify [as 别名]
def main():
  dbinfo = recover()
  conn = MySQLdb.connect(**dbinfo)

  cur = conn.cursor()

  #Learn
  sql = "SELECT id,article_text,trainpos,trainneg,trainneutral FROM articles WHERE trainset=1 AND (trainpos>0 OR trainneg>0 OR trainneutral>0)"
  cur.execute(sql)
  a = Learner()
  for aid,article_text,trainpos,trainneg,trainneutral in cur.fetchall():
    aid = int(aid)
    items = [ (1, int(trainpos)),(0, int(trainneutral)),(-1, int(trainneg)) ]
    classification = max(items, key=lambda x : x[1])[0]
    a.add_string(article_text, classification)
  a.train()

  #Predict
  sql = "SELECT id,article_text FROM articles"
  cur.execute(sql)
  b = Classifier(a)
  for aid,article_text in cur.fetchall():
    aid = int(aid)
    classification = b.classify(article_text)
    sql = "UPDATE articles SET score=%s WHERE id=%s"
    args = [classification,aid]
    cur.execute(sql,args)
    print aid,classification

  conn.commit()
开发者ID:Stonelinks,项目名称:DaBuzz,代码行数:32,代码来源:generator.py

示例5: test_classify_by_randomforest

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import classify [as 别名]
def test_classify_by_randomforest():
    stock_d = testdata()
    ti = TechnicalIndicators(stock_d)

    filename = 'test_N225_randomforest.pickle'
    clffile = os.path.join(os.path.dirname(
                           os.path.abspath(__file__)),
                           '..', 'clf',
                           filename)

    if os.path.exists(clffile):
        os.remove(clffile)

    clf = Classifier(filename)
    ti.calc_ret_index()
    ret = ti.stock['ret_index']

    train_X, train_y = clf.train(ret, classifier="Random Forest")

    eq_(filename, os.path.basename(clf.filename))

    r = round(train_X[-1][-1], 5)
    expected = 1.35486
    eq_(r, expected)

    r = round(train_X[0][0], 5)
    expected = 1.08871
    eq_(r, expected)

    expected = 14
    r = len(train_X[0])
    eq_(r, expected)

    expected = 120
    r = len(train_X)
    eq_(r, expected)

    expected = [1, 0, 0, 0, 1, 1, 0, 0, 0, 0,
                0, 0, 1, 0, 0, 1, 0, 1, 0, 1,
                1, 0, 1, 1, 1, 1, 1, 0, 1, 0,
                1, 1, 1, 1, 0, 1, 0, 1, 1, 0,
                1, 0, 0, 1, 1, 1, 1, 1, 1, 1,
                0, 0, 0, 1, 0, 0, 1, 1, 1, 1,
                1, 0, 1, 0, 0, 0, 0, 0, 0, 1,
                1, 1, 0, 0, 1, 0, 1, 1, 0, 1,
                1, 0, 1, 1, 0, 1, 0, 0, 1, 0,
                1, 1, 0, 0, 1, 0, 1, 0, 1, 1,
                1, 1, 1, 0, 1, 1, 1, 0, 0, 1,
                1, 0, 0, 1, 1, 1, 0, 1, 1, 0]

    for r, e in zip(train_y, expected):
        eq_(r, e)

    expected = 1
    test_y = clf.classify(ret)
    assert(test_y[0] == 0 or test_y[0] == 1)

    if os.path.exists(clffile):
        os.remove(clffile)
开发者ID:MovingAverage,项目名称:finance,代码行数:61,代码来源:test_classifier.py

示例6: classifier

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import classify [as 别名]
def classifier(search_query) :
    cls = Classifier(' '.join(search_query.split('_')))
    classified_output = cls.classify()
    
    if classified_output != None and len(classified_output) > 0 :
        with open("output/" + search_query+".json","w") as out :
            out.write(json.dumps(classified_output))
        
        return json.dumps({"query" : search_query, "status": "Success"})
    else :
        return json.dumps({"query" : search_query, "status": "Failed"})
开发者ID:usc-isi-i2,项目名称:dig-classifier,代码行数:13,代码来源:rest_api1.py

示例7: TextAnalyzerModule

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import classify [as 别名]
class TextAnalyzerModule(ALModule):

    def __init__(self, name):
        ALModule.__init__(self, name)
        self.classifier = Classifier()
        self.responder = Responder()
        self.tts = ALProxy("ALTextToSpeech")

    def say(self, text):
        sentiment = self.classifier.classify(text)
        response = self.responder.get_response(sentiment)
        print("Responding with '%s'" % response)
        self.tts.say(response)
开发者ID:kristiinavaik,项目名称:sentiment-analysis,代码行数:15,代码来源:nao.py

示例8: run

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import classify [as 别名]
    def run(self):
        global worksqueue, spectImg

        classifier = Classifier()

        while True:
            sample = worksqueue.get()
            worksqueue.task_done()

            result = classifier.classify(sample)

            print "\nPreciction: %s\n" % result
        
            spectImg = writeMFCC(sample, RATE)
开发者ID:rohanraja,项目名称:digits-speech-recognition,代码行数:16,代码来源:realtime.py

示例9: main

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import classify [as 别名]
def main():
    args = parser.parse_args()
    full_data_json = read_dataset(args.data)

    # for n in xrange(30, len(full_data_json), 30):
    for n in [len(full_data_json)]:

        corrects = 0
        total = 0

        for _ in xrange(SAMPLES):

            random.shuffle(full_data_json)
            data_json = full_data_json[:n]

            training_set_ratio = 0.7
            training_set_size = int(training_set_ratio * len(data_json) + 0.5)

            training_set = data_json[:training_set_size]
            test_set = data_json[training_set_size:]

            processor = TextProcessor()
            classifier = Classifier(processor)
            classifier.train(training_set)

            for example in test_set:
                text = example["content"]
                predicted_tag = classifier.classify(text)
                expected_tag = classifier.normalize_tag_label(example["tag"])
                if expected_tag in Classifier.IGNORE_TAGS:
                    continue
                if predicted_tag == expected_tag:
                    corrects += 1
                else:
                    # print 'expected = {}, predicted = {}'.format(expected_tag, predicted_tag)
                    pass
                total += 1

        print "{} {}".format(len(data_json), float(corrects) / total)
开发者ID:bernardorufino,项目名称:tg-articles,代码行数:41,代码来源:test.py

示例10: Commonwords

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import classify [as 别名]
        self.dump_information()


if __name__ == "__main__":
    common = Commonwords(commonwords_path)

    event_tagger = tagger.Tagger(classifier="event.ser.gz", port=1111)
    todo_tagger = tagger.Tagger(classifier="todo.ser.gz", port=2222)
    all_tagger = tagger.Tagger(classifier="all.ser.gz", port=3333)

    filenames = [f for f in os.listdir(test_dir) if os.path.isfile(os.path.join(test_dir, f))]
    classifier = Classifier(all_tagger, common)
    for filename in filenames:
        if filename == "freq":
            continue
        msg = open(os.path.join(test_dir, filename), "r").read()
        print "++++++++++++++++++++++++++++++++++++++++"
        print msg
        print "++++++++++++++++++++++++++++++++++++++++"
        cls = classifier.classify(msg)
        # print cls
        if cls == "EVENT":
            t = tokenizer.Tokenizer(msg, event_tagger)
            e = EventExtractor(t.get_toks())
            e.extract_event()
        elif cls == "TODO":
            t = tokenizer.Tokenizer(msg, todo_tagger)
            e = TodoExtractor(t.get_toks())
            e.extract_todo()
        print "++++++++++++++++++++++++++++++++++++++++"
开发者ID:gjq1218,项目名称:event_extraction,代码行数:32,代码来源:extractor.py

示例11: print

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import classify [as 别名]
  print("")
  sys.exit()



# initialize Retriever
retriever = Retriever(sys.argv[1])
collections = retriever.get_collections()


# rank collections by sentiment
all_docs = reduce((lambda x, y: x + y), [v for k,v in collections.iteritems()], [])
all_sentiments = [float(doc.get("sentiment")) for doc in all_docs]
classifier = Classifier(all_sentiments)

reduce_lambda = lambda sum, val: sum + (classifier.classify(float(val.get("sentiment")))[1])
sentiments_t = { k: reduce(reduce_lambda, v, 0.0) for k, v in collections.iteritems() }

sentiments = {k: v/len(collections[k]) for k, v in sentiments_t.iteritems() }

# intro printer
print("")
print("COMP479 Final Project")
print(" by ")
print("Connor Bode, Greg Houle, Michael bla")
print("")

# question 1
print("Q1. Which is the most positive Department in ENCS at Concordia?")
most_positive_tuple = lambda current_highest, current_tuple: current_highest if current_highest[1] > current_tuple[1] else current_tuple
positive = reduce(most_positive_tuple, [(k, v) for k, v in sentiments.iteritems()])
开发者ID:CrawlingFingers,项目名称:ConcordiaCrawler,代码行数:33,代码来源:questions.py

示例12: int

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import classify [as 别名]
if __name__ == "__main__":
  process_at_a_time = int(sys.argv[1])
  
  # Load data from files.
  listings = get_data("listings.txt")
  random.shuffle(listings)
  products = get_data("products.txt")
  classifier = Classifier(products)
  classified_listings = get_data("classified_listings.txt")

  old_listings = map(lambda x: UnenforcedFrozenDict(x['listing']), classified_listings)
  added = 0
  for listing in listings:
    if not UnenforcedFrozenDict(listing) in old_listings:
      print str(listing)
      suggested_product = classifier.classify(listing)
      if suggested_product is not None:
        print "Suggested product: %s" % str(suggested_product)
        yn = ''
        while not yn.lower() in ['y', 'n']:
          yn = raw_input('Is the suggested product correct? (y/n) ')
        if yn == 'y':
          product_name = suggested_product["product_name"]
        else:
          product_name = raw_input('Enter product name: ')
      else:
        product_name = raw_input('Enter product name: ')
      
      if product_name == '':
        classified_listings.append({'listing' : listing, 'product_name' : None })
      else:
开发者ID:jasharpe,项目名称:listingclassifier,代码行数:33,代码来源:manual_classifier.py

示例13: main

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import classify [as 别名]
def main():
  # Parse command line arguments
  parser = argparse.ArgumentParser(description="""
Shopping listing classifier tool. Run in a directory containing listings.txt and products.txt. Produces results.txt.""")
  parser.add_argument('-v','--verbose', help='display extra information for debugging',
      action='store_true')
  parser.add_argument('-d','--diagnostic', help='use classified_listings.txt, which contains listings with correct products.',
      action='store_true')
  args = parser.parse_args()
  
  # Load data from files.
  products = get_data("products.txt")
  if args.diagnostic:
    classified_listings = get_data("classified_listings.txt")
    listings = map(lambda x: x["listing"], classified_listings)
    listing_to_product = {}
    for classified_listing in classified_listings:
      product_name = classified_listing["product_name"]
      listing = UnenforcedFrozenDict(classified_listing["listing"])
      listing_to_product[listing] = product_name
  else:
    listings = get_data("listings.txt")

  # Create a classifier for the provided products.
  classifier = Classifier(products)

  # Classify all listings.
  results = defaultdict(list)
  classified = 0
  correct = 0
  positive_error = 0
  negative_error = 0
  for listing in listings:
    product = classifier.classify(listing, verbose=args.verbose)
    if args.diagnostic:
      correct_product_name = listing_to_product[UnenforcedFrozenDict(listing)]
    if product is None:
      if args.diagnostic and correct_product_name is not None:
        print "NEGATIVE ERROR: None instead of %s\nListing: %s\n" % (correct_product_name, str(listing))
        negative_error += 1
      elif args.diagnostic:
        correct += 1
    else:
      classified += 1
      product_name = product["product_name"]
      results[product_name].append(listing)
      if args.diagnostic and product_name != correct_product_name:
        positive_error += 1
        print "POSITIVE ERROR: %s instead of %s\nListing: %s\n" % (product_name, correct_product_name, str(listing))
      elif args.diagnostic:
        correct += 1
  
  if args.verbose:
    print "Classification rate: %.02f" % (float(classified) / len(listings))
  if args.diagnostic:
    print "Total listings: %d" % len(listings)
    print "Total classified: %d" % classified
    print "Correct: %d (%.02f)" % (correct, (float(correct) / len(listings)))
    print "Positive errors: %d (%.02f)" % (positive_error, (float(positive_error) / len(listings)))
    print "Negative errors: %d (%.02f)" % (negative_error, (float(negative_error) / len(listings)))

  # Process results dictionary into array of Result objects.
  processed_results = []
  for (product_name, classified_listings) in results.items():
    processed_results.append({
      'product_name' : product_name,
      'listings' : classified_listings
    })

  # Print results to "results.txt".
  print_results("results.txt", processed_results)
开发者ID:jasharpe,项目名称:listingclassifier,代码行数:73,代码来源:main.py

示例14: main

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import classify [as 别名]
def main():
    clf = Classifier("weights.txt", "etas.txt")
    with open(K_TRAINING_FILE, 'r') as training_file:
        for record in training_file.readlines():
            (person, label) = parse_record(record)
            clf.classify(person, label=label)
开发者ID:DiyarS,项目名称:CS-483W,代码行数:8,代码来源:train.py

示例15: Classifier

# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import classify [as 别名]
## - December 10, 2015

## - An interactive classifier

import sys
from classifier import Classifier

print "\nPlease wait while the training data is loaded.."

myClassifier = Classifier()
myClassifier.load()

print "Ready for input"

filename = raw_input("Enter a file name or a directory (type \"quit\" to quit) > ")

while filename != "quit":
    if ".txt" in filename:
        with open(filename, 'r') as infile:
            clsfy = myClassifier.classify(infile)
            if clsfy > 0:
                print "Positive! Weight = {0}".format(clsfy)
            elif clsfy < 0:
                print "Negative! Weight = {0}".format(clsfy)
            elif clsfy == 0:
                print "Undertermined"
    else:
        myClassifier.classify_reviews(filename + "*.txt")

    filename = raw_input("Enter a file name or a directory > ")
开发者ID:Studentblanchard,项目名称:DataMining,代码行数:32,代码来源:interactive.py


注:本文中的classifier.Classifier.classify方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。