本文整理汇总了Python中classifier.Classifier.save方法的典型用法代码示例。如果您正苦于以下问题:Python Classifier.save方法的具体用法?Python Classifier.save怎么用?Python Classifier.save使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类classifier.Classifier
的用法示例。
在下文中一共展示了Classifier.save方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import save [as 别名]
def main():
print("started at %s"%str(time.localtime()))
if dumped in os.listdir():
with open(dumped,"rb") as f:
clf = pickle.load(f)
else:
clf = Classifier()
dataNameList = os.listdir(dataPath)
trainModels = [Model(name.split(".")[0], True) for name in dataNameList]
data = np.concatenate([m.feature for m in trainModels],axis=0)
label = np.concatenate([m.labels for m in trainModels],axis=0)
data = clf.preprocess(data, True)
clf.fit(data, label)
print("training time end at %s"%str(time.localtime()))
clf.save()
testNameList = os.listdir(testPath)
testModels = [Model(name.split(".")[0]) for name in testNameList]
for m in testModels:
data = m.feature
data = clf.preprocess(data)
print("compute probability.")
proba = clf.predict_proba(data)
print("saving prob")
np.savetxt("./result_prob/%s.prob"%m.name,proba)
print("saving mid-res.")
np.savetxt("./result_mid/%s.seg"%m.name,np.argmax(proba,axis=-1),fmt="%d")
print("cutting")
WG = build_weight_graph(m.faceGraph,clf.transform(data, threshold="median"))
gList = build_s_t_graph_list(WG, proba)
result = cut_and_label(gList)
print( 'saving result.')
np.savetxt('./result/%s.seg'%m.name,result,fmt='%d')
print("end at %s"%str(time.localtime()))
示例2: TestParser
# 需要导入模块: from classifier import Classifier [as 别名]
# 或者: from classifier.Classifier import save [as 别名]
class TestParser(unittest.TestCase):
def setUp(self):
#Sentence is : 3 times, This sentence: 2 times - case insensitive
self.text = "Line1: Sentence is! This sentence isn't no3.\n" \
"Line2 starts here. This sentence is 4, ok?\r\n" \
"There are two bigrams repeating above"
self.sentencesWithoutStemming = \
[ "line1 sentence is", "this sentence isnt no3",
"line2 starts here", "this sentence is 4 ok",
"there are two bigrams repeating above"]
self.num_bigrams = 14 #the unique ones
self.num_sentences = 5
#Classifier class, encapsulates the 'update_bigrams' method, so:
self.classifier = Classifier(verbose=True)
def test_split_sentences(self):
sentences = split_sentences(self.text)
self.assertEqual(type(sentences).__name__, 'list')
self.assertEqual(len(sentences), self.num_sentences)
def test_remove_stemming(self):
sentences = split_sentences(self.text)
sentencesWithoutStemming = remove_stemming (sentences)
#print sentencesWithoutStemming
self.assertItemsEqual (sentencesWithoutStemming,
self.sentencesWithoutStemming)
def test_make_bigrams(self):
sentences = split_sentences(self.text)
sentencesWithoutStemming = remove_stemming (sentences)
allBigrams = defaultdict(int)
for s in sentencesWithoutStemming:
self.assertIsInstance(s, str)
newBigrams = make_bigrams(s)
#print '\n\n'
#for k,v in newBigrams.items():
#print k,v
self.assertIsInstance(newBigrams, defaultdict)
merge_and_sum_bigrams(allBigrams, newBigrams)
self.classifier.update_joint_apriori(allBigrams)
#for k,v in self.classifier.apriori.items():
#print k,v
self.assertEqual (len(allBigrams), self.num_bigrams)
def assertDictEqual(self, d1, d2, msg=None): # assertEqual uses for dicts
for k,v1 in d1.iteritems():
self.assertIn(k, d2, msg)
v2 = d2[k]
if(isinstance(v1, collections.Iterable) and
not isinstance(v1, basestring)):
self.assertItemsEqual(v1, v2, msg)
else:
self.assertEqual(v1, v2, msg)
return True
def test_save_load(self):
sentences = split_sentences(self.text)
sentencesWithoutStemming = remove_stemming (sentences)
allBigrams = defaultdict(int)
for s in sentencesWithoutStemming:
newBigrams = make_bigrams(s)
merge_and_sum_bigrams(allBigrams, newBigrams)
self.classifier.update_joint_apriori(allBigrams)
for k,v in self.classifier.apriori.items():
print k,v
self.classifier.save('testC')
newClassifier = Classifier()
newClassifier.load('testC')
#self.assertDictEqual(self.classifier.apriori, newClassifier.apriori)
print '\nCOMPARE\n'
for k,v in self.classifier.apriori.items():
print k,v
for k,v in newClassifier.apriori.items():
print k,v
print '\nEND OF COMPARE\n'
'''