本文整理汇总了C++中TriangleMesh::translate方法的典型用法代码示例。如果您正苦于以下问题:C++ TriangleMesh::translate方法的具体用法?C++ TriangleMesh::translate怎么用?C++ TriangleMesh::translate使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TriangleMesh
的用法示例。
在下文中一共展示了TriangleMesh::translate方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: _polygonizeSlices
TriangleMesh IsotropicParticleMesher::_polygonizeSlices(FragmentedVector<MarkerParticle> &particles,
FluidMaterialGrid &materialGrid) {
int width, height, depth;
double dx;
_getSubdividedGridDimensions(&width, &height, &depth, &dx);
int sliceWidth = ceil((double)width / (double)_numPolygonizationSlices);
int numSlices = ceil((double)width / (double)sliceWidth);
if (numSlices == 1) {
return _polygonizeAll(particles, materialGrid);
}
TriangleMesh mesh;
for (int i = 0; i < numSlices; i++) {
int startidx = i*sliceWidth;
int endidx = startidx + sliceWidth - 1;
endidx = endidx < width ? endidx : width - 1;
TriangleMesh sliceMesh = _polygonizeSlice(startidx, endidx, particles, materialGrid);
vmath::vec3 offset = _getSliceGridPositionOffset(startidx, endidx);
sliceMesh.translate(offset);
mesh.join(sliceMesh);
}
return mesh;
}
示例2: pillar
void
SLAPrint::slice()
{
TriangleMesh mesh = this->model->mesh();
mesh.repair();
// align to origin taking raft into account
this->bb = mesh.bounding_box();
if (this->config.raft_layers > 0) {
this->bb.min.x -= this->config.raft_offset.value;
this->bb.min.y -= this->config.raft_offset.value;
this->bb.max.x += this->config.raft_offset.value;
this->bb.max.y += this->config.raft_offset.value;
}
mesh.translate(0, 0, -bb.min.z);
this->bb.translate(0, 0, -bb.min.z);
// if we are generating a raft, first_layer_height will not affect mesh slicing
const float lh = this->config.layer_height.value;
const float first_lh = this->config.first_layer_height.value;
// generate the list of Z coordinates for mesh slicing
// (we slice each layer at half of its thickness)
this->layers.clear();
{
const float first_slice_lh = (this->config.raft_layers > 0) ? lh : first_lh;
this->layers.push_back(Layer(first_slice_lh/2, first_slice_lh));
}
while (this->layers.back().print_z + lh/2 <= mesh.stl.stats.max.z) {
this->layers.push_back(Layer(this->layers.back().print_z + lh/2, this->layers.back().print_z + lh));
}
// perform slicing and generate layers
{
std::vector<float> slice_z;
for (size_t i = 0; i < this->layers.size(); ++i)
slice_z.push_back(this->layers[i].slice_z);
std::vector<ExPolygons> slices;
TriangleMeshSlicer(&mesh).slice(slice_z, &slices);
for (size_t i = 0; i < slices.size(); ++i)
this->layers[i].slices.expolygons = slices[i];
}
// generate infill
if (this->config.fill_density < 100) {
std::auto_ptr<Fill> fill(Fill::new_from_type(this->config.fill_pattern.value));
fill->bounding_box.merge(Point::new_scale(bb.min.x, bb.min.y));
fill->bounding_box.merge(Point::new_scale(bb.max.x, bb.max.y));
fill->spacing = this->config.get_abs_value("infill_extrusion_width", this->config.layer_height.value);
fill->angle = Geometry::deg2rad(this->config.fill_angle.value);
fill->density = this->config.fill_density.value/100;
parallelize<size_t>(
0,
this->layers.size()-1,
boost::bind(&SLAPrint::_infill_layer, this, _1, fill.get()),
this->config.threads.value
);
}
// generate support material
this->sm_pillars.clear();
ExPolygons overhangs;
if (this->config.support_material) {
// flatten and merge all the overhangs
{
Polygons pp;
for (std::vector<Layer>::const_iterator it = this->layers.begin()+1; it != this->layers.end(); ++it)
pp += diff(it->slices, (it - 1)->slices);
overhangs = union_ex(pp);
}
// generate points following the shape of each island
Points pillars_pos;
const coordf_t spacing = scale_(this->config.support_material_spacing);
const coordf_t radius = scale_(this->sm_pillars_radius());
for (ExPolygons::const_iterator it = overhangs.begin(); it != overhangs.end(); ++it) {
// leave a radius/2 gap between pillars and contour to prevent lateral adhesion
for (float inset = radius * 1.5;; inset += spacing) {
// inset according to the configured spacing
Polygons curr = offset(*it, -inset);
if (curr.empty()) break;
// generate points along the contours
for (Polygons::const_iterator pg = curr.begin(); pg != curr.end(); ++pg) {
Points pp = pg->equally_spaced_points(spacing);
for (Points::const_iterator p = pp.begin(); p != pp.end(); ++p)
pillars_pos.push_back(*p);
}
}
}
// for each pillar, check which layers it applies to
for (Points::const_iterator p = pillars_pos.begin(); p != pillars_pos.end(); ++p) {
SupportPillar pillar(*p);
bool object_hit = false;
// check layers top-down
//.........这里部分代码省略.........