本文整理汇总了C++中TriangleMesh::bounding_box方法的典型用法代码示例。如果您正苦于以下问题:C++ TriangleMesh::bounding_box方法的具体用法?C++ TriangleMesh::bounding_box怎么用?C++ TriangleMesh::bounding_box使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TriangleMesh
的用法示例。
在下文中一共展示了TriangleMesh::bounding_box方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: vector
void
ModelObject::center_around_origin()
{
// calculate the displacements needed to
// center this object around the origin
BoundingBoxf3 bb;
{
TriangleMesh mesh;
this->raw_mesh(&mesh);
mesh.bounding_box(&bb);
}
// first align to origin on XYZ
Vectorf3 vector(-bb.min.x, -bb.min.y, -bb.min.z);
// then center it on XY
Sizef3 size = bb.size();
vector.x -= size.x/2;
vector.y -= size.y/2;
this->translate(vector);
this->origin_translation.translate(vector);
if (!this->instances.empty()) {
for (ModelInstancePtrs::const_iterator i = this->instances.begin(); i != this->instances.end(); ++i) {
(*i)->offset.translate(-vector.x, -vector.y);
}
this->update_bounding_box();
}
}
示例2:
// this returns the bounding box of the *transformed* given instance
BoundingBoxf3
ModelObject::instance_bounding_box(size_t instance_idx) const
{
TriangleMesh mesh = this->raw_mesh();
this->instances[instance_idx]->transform_mesh(&mesh);
return mesh.bounding_box();
}
示例3:
void
ModelObject::update_bounding_box()
{
TriangleMesh mesh;
this->mesh(&mesh);
mesh.bounding_box(&this->_bounding_box);
this->_bounding_box_valid = true;
}
示例4: Create
int MeshObj::Create(WCHAR* szfn, ID3D11Device* pd3dDevice, ID3D11DeviceContext* pd3dContext)
{
Release();
TriangleMesh mesh;
MeshObjReader::read(szfn, mesh);
int N = mesh.num_vertices();
m_vertices.resize(N);
for(int i = 0; i < N; ++i)
{
m_vertices[i].pos = mesh.vertices_[i];
m_vertices[i].norm = mesh.normals_[i];
}
D3D11_BUFFER_DESC bdesc;
bdesc.BindFlags = D3D11_BIND_VERTEX_BUFFER;
bdesc.ByteWidth = mesh.num_vertices() * sizeof(D3DXVECTOR3) * 2;
bdesc.CPUAccessFlags = 0;
bdesc.MiscFlags = 0;
bdesc.StructureByteStride = sizeof(D3DXVECTOR3) * 2;
bdesc.Usage = D3D11_USAGE_DEFAULT;
D3D11_SUBRESOURCE_DATA srd;
srd.pSysMem = &m_vertices[0];
srd.SysMemPitch = 0;
srd.SysMemSlicePitch = 0;
pd3dDevice->CreateBuffer(&bdesc, &srd, &m_pVertexBuffer);
bdesc.BindFlags = D3D11_BIND_INDEX_BUFFER;
bdesc.ByteWidth = mesh.num_triangles() * sizeof(Tuple3ui);
bdesc.CPUAccessFlags = 0;
bdesc.MiscFlags = 0;
bdesc.StructureByteStride = sizeof(unsigned);
bdesc.Usage = D3D11_USAGE_DEFAULT;
srd.pSysMem = &mesh.triangles_[0];
srd.SysMemPitch = 0;
srd.SysMemSlicePitch = 0;
pd3dDevice->CreateBuffer(&bdesc, &srd, &m_pIndexBuffer);
numVertices = mesh.num_vertices();
numIndices = mesh.num_triangles() * 3;
D3DXVECTOR3 bblow, bbhigh;
mesh.bounding_box(bblow, bbhigh);
m_bbox_center = (bblow + bbhigh) * 0.5f;
m_bbox_extent = (bbhigh - bblow) * 0.5f;
return 0;
}
示例5:
void
ModelObject::print_info() const
{
using namespace std;
cout << fixed;
cout << "[" << boost::filesystem::path(this->input_file).filename().string() << "]" << endl;
TriangleMesh mesh = this->raw_mesh();
mesh.check_topology();
BoundingBoxf3 bb = mesh.bounding_box();
Sizef3 size = bb.size();
cout << "size_x = " << size.x << endl;
cout << "size_y = " << size.y << endl;
cout << "size_z = " << size.z << endl;
cout << "min_x = " << bb.min.x << endl;
cout << "min_y = " << bb.min.y << endl;
cout << "min_z = " << bb.min.z << endl;
cout << "max_x = " << bb.max.x << endl;
cout << "max_y = " << bb.max.y << endl;
cout << "max_z = " << bb.max.z << endl;
cout << "number_of_facets = " << mesh.stl.stats.number_of_facets << endl;
cout << "manifold = " << (mesh.is_manifold() ? "yes" : "no") << endl;
mesh.repair(); // this calculates number_of_parts
if (mesh.needed_repair()) {
mesh.repair();
if (mesh.stl.stats.degenerate_facets > 0)
cout << "degenerate_facets = " << mesh.stl.stats.degenerate_facets << endl;
if (mesh.stl.stats.edges_fixed > 0)
cout << "edges_fixed = " << mesh.stl.stats.edges_fixed << endl;
if (mesh.stl.stats.facets_removed > 0)
cout << "facets_removed = " << mesh.stl.stats.facets_removed << endl;
if (mesh.stl.stats.facets_added > 0)
cout << "facets_added = " << mesh.stl.stats.facets_added << endl;
if (mesh.stl.stats.facets_reversed > 0)
cout << "facets_reversed = " << mesh.stl.stats.facets_reversed << endl;
if (mesh.stl.stats.backwards_edges > 0)
cout << "backwards_edges = " << mesh.stl.stats.backwards_edges << endl;
}
cout << "number_of_parts = " << mesh.stl.stats.number_of_parts << endl;
cout << "volume = " << mesh.volume() << endl;
}
示例6: pillar
void
SLAPrint::slice()
{
TriangleMesh mesh = this->model->mesh();
mesh.repair();
// align to origin taking raft into account
this->bb = mesh.bounding_box();
if (this->config.raft_layers > 0) {
this->bb.min.x -= this->config.raft_offset.value;
this->bb.min.y -= this->config.raft_offset.value;
this->bb.max.x += this->config.raft_offset.value;
this->bb.max.y += this->config.raft_offset.value;
}
mesh.translate(0, 0, -bb.min.z);
this->bb.translate(0, 0, -bb.min.z);
// if we are generating a raft, first_layer_height will not affect mesh slicing
const float lh = this->config.layer_height.value;
const float first_lh = this->config.first_layer_height.value;
// generate the list of Z coordinates for mesh slicing
// (we slice each layer at half of its thickness)
this->layers.clear();
{
const float first_slice_lh = (this->config.raft_layers > 0) ? lh : first_lh;
this->layers.push_back(Layer(first_slice_lh/2, first_slice_lh));
}
while (this->layers.back().print_z + lh/2 <= mesh.stl.stats.max.z) {
this->layers.push_back(Layer(this->layers.back().print_z + lh/2, this->layers.back().print_z + lh));
}
// perform slicing and generate layers
{
std::vector<float> slice_z;
for (size_t i = 0; i < this->layers.size(); ++i)
slice_z.push_back(this->layers[i].slice_z);
std::vector<ExPolygons> slices;
TriangleMeshSlicer(&mesh).slice(slice_z, &slices);
for (size_t i = 0; i < slices.size(); ++i)
this->layers[i].slices.expolygons = slices[i];
}
// generate infill
if (this->config.fill_density < 100) {
std::auto_ptr<Fill> fill(Fill::new_from_type(this->config.fill_pattern.value));
fill->bounding_box.merge(Point::new_scale(bb.min.x, bb.min.y));
fill->bounding_box.merge(Point::new_scale(bb.max.x, bb.max.y));
fill->spacing = this->config.get_abs_value("infill_extrusion_width", this->config.layer_height.value);
fill->angle = Geometry::deg2rad(this->config.fill_angle.value);
fill->density = this->config.fill_density.value/100;
parallelize<size_t>(
0,
this->layers.size()-1,
boost::bind(&SLAPrint::_infill_layer, this, _1, fill.get()),
this->config.threads.value
);
}
// generate support material
this->sm_pillars.clear();
ExPolygons overhangs;
if (this->config.support_material) {
// flatten and merge all the overhangs
{
Polygons pp;
for (std::vector<Layer>::const_iterator it = this->layers.begin()+1; it != this->layers.end(); ++it)
pp += diff(it->slices, (it - 1)->slices);
overhangs = union_ex(pp);
}
// generate points following the shape of each island
Points pillars_pos;
const coordf_t spacing = scale_(this->config.support_material_spacing);
const coordf_t radius = scale_(this->sm_pillars_radius());
for (ExPolygons::const_iterator it = overhangs.begin(); it != overhangs.end(); ++it) {
// leave a radius/2 gap between pillars and contour to prevent lateral adhesion
for (float inset = radius * 1.5;; inset += spacing) {
// inset according to the configured spacing
Polygons curr = offset(*it, -inset);
if (curr.empty()) break;
// generate points along the contours
for (Polygons::const_iterator pg = curr.begin(); pg != curr.end(); ++pg) {
Points pp = pg->equally_spaced_points(spacing);
for (Points::const_iterator p = pp.begin(); p != pp.end(); ++p)
pillars_pos.push_back(*p);
}
}
}
// for each pillar, check which layers it applies to
for (Points::const_iterator p = pillars_pos.begin(); p != pillars_pos.end(); ++p) {
SupportPillar pillar(*p);
bool object_hit = false;
// check layers top-down
//.........这里部分代码省略.........