当前位置: 首页>>代码示例>>C++>>正文


C++ TriangleMesh::repair方法代码示例

本文整理汇总了C++中TriangleMesh::repair方法的典型用法代码示例。如果您正苦于以下问题:C++ TriangleMesh::repair方法的具体用法?C++ TriangleMesh::repair怎么用?C++ TriangleMesh::repair使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在TriangleMesh的用法示例。


在下文中一共展示了TriangleMesh::repair方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1:

void
ModelObject::print_info() const
{
    using namespace std;
    cout << fixed;
    cout << "[" << boost::filesystem::path(this->input_file).filename().string() << "]" << endl;
    
    TriangleMesh mesh = this->raw_mesh();
    mesh.check_topology();
    BoundingBoxf3 bb = mesh.bounding_box();
    Sizef3 size = bb.size();
    cout << "size_x = " << size.x << endl;
    cout << "size_y = " << size.y << endl;
    cout << "size_z = " << size.z << endl;
    cout << "min_x = " << bb.min.x << endl;
    cout << "min_y = " << bb.min.y << endl;
    cout << "min_z = " << bb.min.z << endl;
    cout << "max_x = " << bb.max.x << endl;
    cout << "max_y = " << bb.max.y << endl;
    cout << "max_z = " << bb.max.z << endl;
    cout << "number_of_facets = " << mesh.stl.stats.number_of_facets  << endl;
    cout << "manifold = "   << (mesh.is_manifold() ? "yes" : "no") << endl;
    
    mesh.repair();  // this calculates number_of_parts
    if (mesh.needed_repair()) {
        mesh.repair();
        if (mesh.stl.stats.degenerate_facets > 0)
            cout << "degenerate_facets = "  << mesh.stl.stats.degenerate_facets << endl;
        if (mesh.stl.stats.edges_fixed > 0)
            cout << "edges_fixed = "        << mesh.stl.stats.edges_fixed       << endl;
        if (mesh.stl.stats.facets_removed > 0)
            cout << "facets_removed = "     << mesh.stl.stats.facets_removed    << endl;
        if (mesh.stl.stats.facets_added > 0)
            cout << "facets_added = "       << mesh.stl.stats.facets_added      << endl;
        if (mesh.stl.stats.facets_reversed > 0)
            cout << "facets_reversed = "    << mesh.stl.stats.facets_reversed   << endl;
        if (mesh.stl.stats.backwards_edges > 0)
            cout << "backwards_edges = "    << mesh.stl.stats.backwards_edges   << endl;
    }
    cout << "number_of_parts =  " << mesh.stl.stats.number_of_parts << endl;
    cout << "volume = "           << mesh.volume()                  << endl;
}
开发者ID:jdfr,项目名称:Slic3r,代码行数:42,代码来源:Model.cpp

示例2: runtime_error

bool
STL::read_file(std::string input_file, Model* model)
{
    // TODO: encode file name
    // TODO: check that file exists
    
    TriangleMesh mesh;
    mesh.ReadSTLFile(input_file);
    mesh.repair();
    
    if (mesh.facets_count() == 0)
        throw std::runtime_error("This STL file couldn't be read because it's empty.");
    
    ModelObject* object = model->add_object();
    object->name        = input_file;  // TODO: use basename()
    object->input_file  = input_file;
    
    ModelVolume* volume = object->add_volume(mesh);
    volume->name        = input_file;   // TODO: use basename()
    
    return true;
}
开发者ID:aaronhanson,项目名称:Slic3r,代码行数:22,代码来源:IO.cpp

示例3: pillar

void
SLAPrint::slice()
{
    TriangleMesh mesh = this->model->mesh();
    mesh.repair();
    
    // align to origin taking raft into account
    this->bb = mesh.bounding_box();
    if (this->config.raft_layers > 0) {
        this->bb.min.x -= this->config.raft_offset.value;
        this->bb.min.y -= this->config.raft_offset.value;
        this->bb.max.x += this->config.raft_offset.value;
        this->bb.max.y += this->config.raft_offset.value;
    }
    mesh.translate(0, 0, -bb.min.z);
    this->bb.translate(0, 0, -bb.min.z);
    
    // if we are generating a raft, first_layer_height will not affect mesh slicing
    const float lh       = this->config.layer_height.value;
    const float first_lh = this->config.first_layer_height.value;
    
    // generate the list of Z coordinates for mesh slicing
    // (we slice each layer at half of its thickness)
    this->layers.clear();
    {
        const float first_slice_lh = (this->config.raft_layers > 0) ? lh : first_lh;
        this->layers.push_back(Layer(first_slice_lh/2, first_slice_lh));
    }
    while (this->layers.back().print_z + lh/2 <= mesh.stl.stats.max.z) {
        this->layers.push_back(Layer(this->layers.back().print_z + lh/2, this->layers.back().print_z + lh));
    }
    
    // perform slicing and generate layers
    {
        std::vector<float> slice_z;
        for (size_t i = 0; i < this->layers.size(); ++i)
            slice_z.push_back(this->layers[i].slice_z);
        
        std::vector<ExPolygons> slices;
        TriangleMeshSlicer(&mesh).slice(slice_z, &slices);
        
        for (size_t i = 0; i < slices.size(); ++i)
            this->layers[i].slices.expolygons = slices[i];
    }
    
    // generate infill
    if (this->config.fill_density < 100) {
        std::auto_ptr<Fill> fill(Fill::new_from_type(this->config.fill_pattern.value));
        fill->bounding_box.merge(Point::new_scale(bb.min.x, bb.min.y));
        fill->bounding_box.merge(Point::new_scale(bb.max.x, bb.max.y));
        fill->spacing       = this->config.get_abs_value("infill_extrusion_width", this->config.layer_height.value);
        fill->angle         = Geometry::deg2rad(this->config.fill_angle.value);
        fill->density       = this->config.fill_density.value/100;
        
        parallelize<size_t>(
            0,
            this->layers.size()-1,
            boost::bind(&SLAPrint::_infill_layer, this, _1, fill.get()),
            this->config.threads.value
        );
    }
    
    // generate support material
    this->sm_pillars.clear();
    ExPolygons overhangs;
    if (this->config.support_material) {
        // flatten and merge all the overhangs
        {
            Polygons pp;
            for (std::vector<Layer>::const_iterator it = this->layers.begin()+1; it != this->layers.end(); ++it)
                pp += diff(it->slices, (it - 1)->slices);
            overhangs = union_ex(pp);
        }
        
        // generate points following the shape of each island
        Points pillars_pos;
        const coordf_t spacing = scale_(this->config.support_material_spacing);
        const coordf_t radius  = scale_(this->sm_pillars_radius());
        for (ExPolygons::const_iterator it = overhangs.begin(); it != overhangs.end(); ++it) {
            // leave a radius/2 gap between pillars and contour to prevent lateral adhesion
            for (float inset = radius * 1.5;; inset += spacing) {
                // inset according to the configured spacing
                Polygons curr = offset(*it, -inset);
                if (curr.empty()) break;
                
                // generate points along the contours
                for (Polygons::const_iterator pg = curr.begin(); pg != curr.end(); ++pg) {
                    Points pp = pg->equally_spaced_points(spacing);
                    for (Points::const_iterator p = pp.begin(); p != pp.end(); ++p)
                        pillars_pos.push_back(*p);
                }
            }
        }
        
        // for each pillar, check which layers it applies to
        for (Points::const_iterator p = pillars_pos.begin(); p != pillars_pos.end(); ++p) {
            SupportPillar pillar(*p);
            bool object_hit = false;
            
            // check layers top-down
//.........这里部分代码省略.........
开发者ID:jeffkyjin,项目名称:Slic3r,代码行数:101,代码来源:SLAPrint.cpp

示例4: config

int
main(const int argc, const char **argv)
{
    // parse all command line options into a DynamicConfig
    ConfigDef config_def;
    config_def.merge(cli_config_def);
    config_def.merge(print_config_def);
    DynamicConfig config(&config_def);
    t_config_option_keys input_files;
    config.read_cli(argc, argv, &input_files);
    
    // apply command line options to a more handy CLIConfig
    CLIConfig cli_config;
    cli_config.apply(config, true);
    
    DynamicPrintConfig print_config;
    
    // load config files supplied via --load
    for (std::vector<std::string>::const_iterator file = cli_config.load.values.begin();
        file != cli_config.load.values.end(); ++file) {
        if (!boost::filesystem::exists(*file)) {
            std::cout << "No such file: " << *file << std::endl;
            exit(1);
        }
        
        DynamicPrintConfig c;
        try {
            c.load(*file);
        } catch (std::exception &e) {
            std::cout << "Error while reading config file: " << e.what() << std::endl;
            exit(1);
        }
        c.normalize();
        print_config.apply(c);
    }
    
    // apply command line options to a more specific DynamicPrintConfig which provides normalize()
    // (command line options override --load files)
    print_config.apply(config, true);
    print_config.normalize();
    
    // write config if requested
    if (!cli_config.save.value.empty()) print_config.save(cli_config.save.value);
    
    // read input file(s) if any
    std::vector<Model> models;
    for (t_config_option_keys::const_iterator it = input_files.begin(); it != input_files.end(); ++it) {
        if (!boost::filesystem::exists(*it)) {
            std::cout << "No such file: " << *it << std::endl;
            exit(1);
        }
        
        Model model;
        // TODO: read other file formats with Model::read_from_file()
        try {
            Slic3r::IO::STL::read(*it, &model);
        } catch (std::exception &e) {
            std::cout << *it << ": " << e.what() << std::endl;
            exit(1);
        }
        
        if (model.objects.empty()) {
            printf("Error: file is empty: %s\n", it->c_str());
            continue;
        }
        
        model.add_default_instances();
        
        // apply command line transform options
        for (ModelObjectPtrs::iterator o = model.objects.begin(); o != model.objects.end(); ++o) {
            if (cli_config.scale_to_fit.is_positive_volume())
                (*o)->scale_to_fit(cli_config.scale_to_fit.value);
            
            (*o)->scale(cli_config.scale.value);
            (*o)->rotate(cli_config.rotate.value, Z);
        }
        
        // TODO: handle --merge
        models.push_back(model);
    }
    
    for (std::vector<Model>::iterator model = models.begin(); model != models.end(); ++model) {
        if (cli_config.info) {
            // --info works on unrepaired model
            model->print_info();
        } else if (cli_config.export_obj) {
            std::string outfile = cli_config.output.value;
            if (outfile.empty()) outfile = model->objects.front()->input_file + ".obj";
    
            TriangleMesh mesh = model->mesh();
            mesh.repair();
            Slic3r::IO::OBJ::write(mesh, outfile);
            printf("File exported to %s\n", outfile.c_str());
        } else if (cli_config.export_pov) {
            std::string outfile = cli_config.output.value;
            if (outfile.empty()) outfile = model->objects.front()->input_file + ".pov";
    
            TriangleMesh mesh = model->mesh();
            mesh.repair();
            Slic3r::IO::POV::write(mesh, outfile);
//.........这里部分代码省略.........
开发者ID:jeffkyjin,项目名称:Slic3r,代码行数:101,代码来源:slic3r.cpp


注:本文中的TriangleMesh::repair方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。