本文整理汇总了C++中NeuralNetwork::getSynapses方法的典型用法代码示例。如果您正苦于以下问题:C++ NeuralNetwork::getSynapses方法的具体用法?C++ NeuralNetwork::getSynapses怎么用?C++ NeuralNetwork::getSynapses使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类NeuralNetwork
的用法示例。
在下文中一共展示了NeuralNetwork::getSynapses方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: calculate
/**
* Returns the strength of the owner synapse.
*
* @param owner the owner of this SynapseFunction.
* @return the strength of the owner.
*/
double CloneSimpleSynapseFunction::calculate(Synapse *owner) {
SimpleSynapseFunction::calculate(owner);
if(owner == 0) {
return 0.0;
}
if(mTargetId->get() == 0) {
//per default set the id to the own synapse.
mTargetId->set(owner->getId());
}
if(mLastKnownTargetId != mTargetId->get()) {
mTargetSynapse = 0;
}
mLastKnownTargetId = mTargetId->get();
if(mTargetId->get() == owner->getId()) {
mTargetSynapse = owner;
}
else {
Neuron *neuron = owner->getSource();
QList<Synapse*> synapses;
if(neuron != 0) {
NeuralNetwork *network = neuron->getOwnerNetwork();
if(network != 0) {
synapses = network->getSynapses();
}
}
if(mTargetSynapse == 0) {
mTargetSynapse = NeuralNetwork::selectSynapseById(mTargetId->get(), synapses);
}
if(mTargetSynapse != 0) {
if(!synapses.contains(mTargetSynapse)) {
mTargetSynapse = 0;
}
}
if(mTargetSynapse != 0) {
owner->getStrengthValue().set(mTargetSynapse->getStrengthValue().get());
}
}
return SimpleSynapseFunction::calculate(owner);
}
示例2: testDuplicationAndEquals
// Chris
void TestNeuralNetwork::testDuplicationAndEquals() {
TransferFunctionAdapter tfa("TFA", -0.5, 0.5);
ActivationFunctionAdapter afa("AFA");
SynapseFunctionAdapter sfa("SFA");
NeuralNetwork *net = new NeuralNetwork(afa, tfa, sfa);
ControlInterfaceAdapter controlInterface;
net->setControlInterface(&controlInterface);
QVERIFY(net->getControlInterface() == &controlInterface);
Neuron *neuron1 = new Neuron("Neuron1", tfa, afa, 2001);
Neuron *neuron2 = new Neuron("Neuron1", tfa, afa, 2002);
Neuron *neuron3 = new Neuron("Neuron1", tfa, afa, 2003);
neuron1->setProperty(Neuron::NEURON_TYPE_INPUT);
neuron3->setProperty(Neuron::NEURON_TYPE_OUTPUT);
Synapse *synapse1 = Synapse::createSynapse(neuron1, neuron2, 0.5, sfa, 3001);
Synapse *synapse2 = Synapse::createSynapse(neuron2, neuron3, 1.5, sfa, 3002);
Synapse *synapse3 = Synapse::createSynapse(neuron3, synapse1, 0.1, sfa, 3003);
net->addNeuron(neuron1);
net->addNeuron(neuron2);
net->addNeuron(neuron3);
QCOMPARE(net->getNeurons().size(), 3);
QVERIFY(net->getNeurons().contains(neuron1));
QVERIFY(net->getNeurons().contains(neuron2));
QVERIFY(net->getNeurons().contains(neuron3));
QCOMPARE(net->getSynapses().size(), 3);
QVERIFY(net->getSynapses().contains(synapse1));
QVERIFY(net->getSynapses().contains(synapse2));
QVERIFY(net->getSynapses().contains(synapse3));
NeuralNetwork *copy = net->createCopy();
//control interface is NOT copied.
QVERIFY(copy->getControlInterface() == 0);
QCOMPARE(copy->getNeurons().size(), 3);
QVERIFY(!copy->getNeurons().contains(neuron1));
QVERIFY(!copy->getNeurons().contains(neuron2));
QVERIFY(!copy->getNeurons().contains(neuron3));
QCOMPARE(copy->getSynapses().size(), 3);
QVERIFY(!copy->getSynapses().contains(synapse1));
QVERIFY(!copy->getSynapses().contains(synapse2));
QVERIFY(!copy->getSynapses().contains(synapse3));
Neuron *cNeuron1 = NeuralNetwork::selectNeuronById(neuron1->getId(), copy->getNeurons());
Neuron *cNeuron2 = NeuralNetwork::selectNeuronById(neuron2->getId(), copy->getNeurons());
Neuron *cNeuron3 = NeuralNetwork::selectNeuronById(neuron3->getId(), copy->getNeurons());
Synapse *cSynapse1 = NeuralNetwork::selectSynapseById(synapse1->getId(), copy->getSynapses());
Synapse *cSynapse2 = NeuralNetwork::selectSynapseById(synapse2->getId(), copy->getSynapses());
Synapse *cSynapse3 = NeuralNetwork::selectSynapseById(synapse3->getId(), copy->getSynapses());
QVERIFY(cNeuron1 != 0);
QVERIFY(cNeuron2 != 0);
QVERIFY(cNeuron3 != 0);
QVERIFY(cNeuron1->equals(neuron1));
QVERIFY(cNeuron2->equals(neuron2));
QVERIFY(cNeuron3->equals(neuron3));
QCOMPARE(cNeuron1->getId(), (qulonglong) 2001);
QCOMPARE(cNeuron2->getId(), (qulonglong) 2002);
QCOMPARE(cNeuron3->getId(), (qulonglong) 2003);
QVERIFY(net->getInputNeurons().size() == 1);
QVERIFY(copy->getInputNeurons().size() == 1);
QVERIFY(net->getInputNeurons().at(0) == neuron1);
QVERIFY(copy->getInputNeurons().at(0) == cNeuron1);
QVERIFY(net->getOutputNeurons().size() == 1);
QVERIFY(copy->getOutputNeurons().size() == 1);
QVERIFY(net->getOutputNeurons().at(0) == neuron3);
QVERIFY(copy->getOutputNeurons().at(0) == cNeuron3);
QVERIFY(cSynapse1 != 0);
QVERIFY(cSynapse2 != 0);
QVERIFY(cSynapse3 != 0);
QVERIFY(cSynapse1->equals(synapse1));
QVERIFY(cSynapse2->equals(synapse2));
QVERIFY(cSynapse3->equals(synapse3));
QCOMPARE(cSynapse1->getId(), (qulonglong) 3001);
QCOMPARE(cSynapse2->getId(), (qulonglong) 3002);
QCOMPARE(cSynapse3->getId(), (qulonglong) 3003);
QVERIFY(cSynapse1->getSource() == cNeuron1);
QVERIFY(cSynapse2->getSource() == cNeuron2);
QVERIFY(cSynapse3->getSource() == cNeuron3);
QVERIFY(cSynapse1->getTarget() == cNeuron2);
QVERIFY(cSynapse2->getTarget() == cNeuron3);
//.........这里部分代码省略.........
示例3: calculateDegreesOfFreedom
void NetworkDegreeOfFreedomCalculator::calculateDegreesOfFreedom() {
QList<NeuralNetwork*> networks = Neuro::getNeuralNetworkManager()->getNeuralNetworks();
if(networks.empty()) {
mDOFAll->set(0);
mDOFMain->set(0);
mDOFBiasTerms->set(0);
mDOFSynapseWeights->set(0);
mDOFTransferFunctions->set(0);
mDOFActivationFunctions->set(0);
mDOFSynapseFunctions->set(0);
return;
}
NeuralNetwork *network = networks.at(0);
if(network == 0) {
Core::log("NetworkDegreeOfFreedomCalculator: Could not find a network...");
return;
}
int dofBias = 0;
int dofWeights = 0;
int dofTF = 0;
int dofAF = 0;
int dofSF = 0;
QList<Neuron*> neurons = network->getNeurons();
for(QListIterator<Neuron*> i(neurons); i.hasNext();) {
Neuron *neuron = i.next();
bool bias = true;
bool tf = true;
bool af = true;
if(neuron->hasProperty(NeuralNetworkConstants::TAG_ELEMENT_PROTECTED)) {
bias = false;
tf = false;
af = false;
}
else {
QString reducedDOFs = neuron->getProperty(
NeuralNetworkConstants::TAG_ELEMENT_REDUCED_DEGREES_OF_FREEDOM);
if(reducedDOFs != "") {
if(reducedDOFs.contains("B")) {
bias = false;
}
if(reducedDOFs.contains("A")) {
af = false;
}
if(reducedDOFs.contains("T")) {
tf = false;
}
}
//Count bias only as degree of freedom, if there is one set.
if(neuron->getBiasValue().get() == 0.0
|| neuron->hasProperty(NeuralNetworkConstants::TAG_NEURON_PROTECT_BIAS))
{
bias = false;
}
}
if(bias) { ++dofBias; }
if(tf) { ++dofTF; }
if(af) { ++dofAF; }
}
QList<Synapse*> synapses = network->getSynapses();
for(QListIterator<Synapse*> i(synapses); i.hasNext();) {
Synapse *synapse = i.next();
bool weight = true;
bool sf = true;
if(synapse->hasProperty(NeuralNetworkConstants::TAG_ELEMENT_PROTECTED)) {
weight = false;
sf = false;
}
else {
QString reducedDOFs = synapse->getProperty(
NeuralNetworkConstants::TAG_ELEMENT_REDUCED_DEGREES_OF_FREEDOM);
if(reducedDOFs != "") {
if(reducedDOFs.contains("W")) {
weight = false;
}
if(reducedDOFs.contains("S")) {
sf = false;
}
}
if(synapse->hasProperty(NeuralNetworkConstants::TAG_SYNAPSE_PROTECT_STRENGTH)) {
weight = false;
}
}
if(weight) { ++dofWeights; }
if(sf) { ++dofSF; }
}
mDOFAll->set(dofBias + dofWeights + dofTF + dofAF + dofSF);
//.........这里部分代码省略.........