当前位置: 首页>>代码示例>>C++>>正文


C++ NeuralNetwork::addLayer方法代码示例

本文整理汇总了C++中NeuralNetwork::addLayer方法的典型用法代码示例。如果您正苦于以下问题:C++ NeuralNetwork::addLayer方法的具体用法?C++ NeuralNetwork::addLayer怎么用?C++ NeuralNetwork::addLayer使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在NeuralNetwork的用法示例。


在下文中一共展示了NeuralNetwork::addLayer方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: createNeuralNetwork

static NeuralNetwork createNeuralNetwork(size_t xPixels, size_t yPixels,
    size_t colors, std::default_random_engine& engine)
{
    NeuralNetwork network;

    // 5x5 convolutional layer
    network.addLayer(FeedForwardLayer(xPixels, yPixels * colors, yPixels * colors));

    // 2x2 pooling layer
    //network.addLayer(Layer(1, xPixels, xPixels));

    // final prediction layer
    network.addLayer(FeedForwardLayer(1, network.getOutputCount(), 1));

    network.initializeRandomly(engine);

    return network;
}
开发者ID:sudnya,项目名称:video-classifier,代码行数:18,代码来源:test-minerva-visualization.cpp

示例2: createModel

static void createModel(ClassificationModel& model, const Parameters& parameters,
	std::default_random_engine& engine)
{
	NeuralNetwork featureSelector;
	
	size_t totalPixels = parameters.xPixels * parameters.yPixels * parameters.colors;

	// derive parameters from image dimensions 
	const size_t blockSize = std::min(parameters.xPixels, parameters.blockX) *
		std::min(parameters.yPixels, parameters.blockY) * parameters.colors;
	const size_t blocks    = totalPixels / blockSize;
	const size_t blockStep = blockSize / parameters.blockStep;

	size_t reductionFactor = 4;

	// convolutional layer
	featureSelector.addLayer(Layer(blocks, blockSize, blockSize / reductionFactor, blockStep));
	
	// pooling layer
	featureSelector.addLayer(
		Layer(1,
			blocks * featureSelector.back().getOutputBlockingFactor(),
			blocks * featureSelector.back().getOutputBlockingFactor()));
	
	// contrast normalization
	//featureSelector.addLayer(Layer(featureSelector.back().blocks(),
	//	featureSelector.back().getOutputBlockingFactor(),
	//	featureSelector.back().getOutputBlockingFactor()));

	featureSelector.initializeRandomly(engine);
	minerva::util::log("TestFirstLayerFeatures")
		<< "Building feature selector network with "
		<< featureSelector.getOutputCount() << " output neurons\n";

	featureSelector.setUseSparseCostFunction(true);

	model.setNeuralNetwork("FeatureSelector", featureSelector);
}
开发者ID:nudles,项目名称:video-classifier,代码行数:38,代码来源:test-first-layer-features.cpp

示例3: NNDecider

 NNDecider( vector< Digit > trainingSet )
 :   nn(64)
 {
     nn.addLayer(10);
     for(int i = 0; i < 10; i++)
     {
         for(int j = -1; j < 64; j++)
         {
             nn.addConnection(0, i, j, 0);
         }
     }
     int N = 10;
     while(N--)
     {
         for(int i = 0; i < trainingSet.size(); i++)
         {
             learnProbColorGivenN(trainingSet[i]);
         }
     }
 }
开发者ID:andmer,项目名称:CommodityADS2014Code,代码行数:20,代码来源:test.cpp


注:本文中的NeuralNetwork::addLayer方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。