当前位置: 首页>>代码示例>>C++>>正文


C++ NeuralNetwork::getInputBlockingFactor方法代码示例

本文整理汇总了C++中NeuralNetwork::getInputBlockingFactor方法的典型用法代码示例。如果您正苦于以下问题:C++ NeuralNetwork::getInputBlockingFactor方法的具体用法?C++ NeuralNetwork::getInputBlockingFactor怎么用?C++ NeuralNetwork::getInputBlockingFactor使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在NeuralNetwork的用法示例。


在下文中一共展示了NeuralNetwork::getInputBlockingFactor方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: visualizeNetwork

static float visualizeNetwork(NeuralNetwork& neuralNetwork, const Image& referenceImage,
    const std::string& outputPath)
{
    // save the downsampled reference
    Image reference = referenceImage;
    
    reference.setPath(rename(outputPath));
    reference.save();

    NeuronVisualizer visualizer(&neuralNetwork);
    
    Image image = referenceImage;
    
    image.setPath(outputPath);
    
    visualizer.visualizeNeuron(image, 0);

    lucius::util::log("TestVisualization") << "Reference response: "
        << neuralNetwork.runInputs(referenceImage.convertToStandardizedMatrix(
            neuralNetwork.getInputCount(),
            neuralNetwork.getInputBlockingFactor(), image.colorComponents())).toString();
    lucius::util::log("TestVisualization") << "Visualized response: "
        << neuralNetwork.runInputs(image.convertToStandardizedMatrix(
            neuralNetwork.getInputCount(),
            neuralNetwork.getInputBlockingFactor(), image.colorComponents())).toString();
    
    image.save();

    return 0.0f;
}
开发者ID:sudnya,项目名称:video-classifier,代码行数:30,代码来源:test-minerva-visualization.cpp

示例2: visualizeNeuron

static void visualizeNeuron(const NeuralNetwork& network, Image& image, unsigned int outputNeuron)
{
	Matrix matrix;

	std::string solverClass = util::KnobDatabase::getKnobValue(
		"NeuronVisualizer::SolverClass", "Differentiable");
	
	if(solverClass == "Differentiable")
	{
		matrix = optimizeWithDerivative(&network, image, outputNeuron);
	}
	else if(solverClass == "NonDifferentiable")
	{
		matrix = optimizeWithoutDerivative(&network, image, outputNeuron);
	}
	else if(solverClass == "Analytical")
	{
		matrix = optimizeAnalytically(&network, image, outputNeuron);
	}
	else
	{
		throw std::runtime_error("Invalid neuron visializer solver class " + solverClass);
	}

	size_t x = 0;
	size_t y = 0;
	
	util::getNearestToSquareFactors(x, y, network.getInputBlockingFactor());

	updateImage(image, matrix, x, y);
}
开发者ID:RPrenger,项目名称:video-classifier,代码行数:31,代码来源:NeuronVisualizer.cpp

示例3: testNetwork

static float testNetwork(NeuralNetwork& neuralNetwork, const Image& image,
    float noiseMagnitude, size_t iterations, size_t batchSize,
    std::default_random_engine& engine)
{
    float accuracy = 0.0f;

    iterations = std::max(iterations, 1UL);

    lucius::util::log("TestVisualization") << "Testing the accuracy of the trained network.\n";

    for(size_t i = 0; i != iterations; ++i)
    {
        lucius::util::log("TestVisualization") << " Iteration " << i << " out of "
            << iterations << "\n";
        
        ImageVector batch = generateBatch(image, noiseMagnitude,
            batchSize, engine);
        
        Matrix input = batch.convertToStandardizedMatrix(
            neuralNetwork.getInputCount(),
            neuralNetwork.getInputBlockingFactor(), image.colorComponents());
        
        Matrix reference = generateReference(batch);
        
        lucius::util::log("TestVisualization") << "  Input:     " << input.toString();
        lucius::util::log("TestVisualization") << "  Reference: " << reference.toString();
        
        accuracy += neuralNetwork.computeAccuracy(input, reference);
    }
    
    return accuracy * 100.0f / iterations;
}
开发者ID:sudnya,项目名称:video-classifier,代码行数:32,代码来源:test-minerva-visualization.cpp

示例4: trainNetwork

static void trainNetwork(NeuralNetwork& neuralNetwork, const Image& image,
    float noiseMagnitude, size_t iterations, size_t batchSize,
    std::default_random_engine& engine)
{
    lucius::util::log("TestVisualization") << "Training the network.\n";
    for(size_t i = 0; i != iterations; ++i)
    {
        lucius::util::log("TestVisualization") << " Iteration " << i << " out of "
            << iterations << "\n";
        ImageVector batch = generateBatch(image, noiseMagnitude,
            batchSize, engine);
        
        Matrix input = batch.convertToStandardizedMatrix(
            neuralNetwork.getInputCount(),
            neuralNetwork.getInputBlockingFactor(), image.colorComponents());
        
        Matrix reference = generateReference(batch);
        
        lucius::util::log("TestVisualization") << "  Input:     " << input.toString();
        lucius::util::log("TestVisualization") << "  Reference: " << reference.toString();
        
        neuralNetwork.train(input, reference);
    }
}
开发者ID:sudnya,项目名称:video-classifier,代码行数:24,代码来源:test-minerva-visualization.cpp


注:本文中的NeuralNetwork::getInputBlockingFactor方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。