当前位置: 首页>>代码示例>>C++>>正文


C++ NeuralNetwork::count_parameters_number方法代码示例

本文整理汇总了C++中NeuralNetwork::count_parameters_number方法的典型用法代码示例。如果您正苦于以下问题:C++ NeuralNetwork::count_parameters_number方法的具体用法?C++ NeuralNetwork::count_parameters_number怎么用?C++ NeuralNetwork::count_parameters_number使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在NeuralNetwork的用法示例。


在下文中一共展示了NeuralNetwork::count_parameters_number方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: test_count_parameters_number

void NeuralNetworkTest::test_count_parameters_number(void) {
  message += "test_count_parameters_number\n";

  NeuralNetwork nn;

  IndependentParameters* ip;

  // Test

  nn.set();
  assert_true(nn.count_parameters_number() == 0, LOG);

  // Test

  nn.set(1, 1, 1);
  assert_true(nn.count_parameters_number() == 4, LOG);

  // Test

  nn.set(1);
  assert_true(nn.count_parameters_number() == 1, LOG);

  // Test

  nn.set(1, 1, 1);

  ip = new IndependentParameters(1);
  nn.set_independent_parameters_pointer(ip);

  assert_true(nn.count_parameters_number() == 5, LOG);
}
开发者ID:jrdodson,项目名称:opennn,代码行数:31,代码来源:neural_network_test.cpp

示例2: test_calculate_gradient

void NormalizedSquaredErrorTest::test_calculate_gradient(void)
{
   message += "test_calculate_gradient\n";

   NumericalDifferentiation nd;

   NeuralNetwork nn;

   Vector<double> network_parameters;

   DataSet ds;
   Matrix<double> data;

   NormalizedSquaredError nse(&nn, &ds);

   Vector<double> objective_gradient;
   Vector<double> numerical_objective_gradient;

   // Test 

   nn.set(1,1,1);

   nn.initialize_parameters(0.0);

   ds.set(1, 1, 2);

   data.set(2, 2);
   data[0][0] = -1.0;
   data[0][1] = -1.0;
   data[1][0] = 1.0;
   data[1][1] = 1.0;

   ds.set_data(data);

   objective_gradient = nse.calculate_gradient();

   assert_true(objective_gradient.size() == nn.count_parameters_number(), LOG);
   assert_true(objective_gradient == 0.0, LOG);

   // Test 

   nn.set(3, 4, 5);
   nn.randomize_parameters_normal();

   network_parameters = nn.arrange_parameters();

   ds.set(3, 5, 2);
   ds.randomize_data_normal();

   objective_gradient = nse.calculate_gradient();
   numerical_objective_gradient = nd.calculate_gradient(nse, &NormalizedSquaredError::calculate_performance, network_parameters);

   assert_true((objective_gradient - numerical_objective_gradient).calculate_absolute_value() < 1.0e-3, LOG);
}
开发者ID:Quanteek,项目名称:OpenNN-CMake,代码行数:54,代码来源:normalized_squared_error_test.cpp

示例3: test_calculate_gradient

void PerformanceFunctionalTest::test_calculate_gradient(void)
{
   message += "test_calculate_gradient\n";

   NeuralNetwork nn;

   size_t parameters_number;
   Vector<double> parameters;

   PerformanceFunctional pf(&nn);

   pf.destruct_all_terms();
   pf.set_regularization_type(PerformanceFunctional::NEURAL_PARAMETERS_NORM_REGULARIZATION);

   Vector<double> gradient;

   // Test

   nn.set(1, 1, 1);

   nn.initialize_parameters(0.0);

   parameters = nn.arrange_parameters();

   gradient = pf.calculate_gradient(parameters);

   assert_true(gradient == 0.0, LOG);

   // Test

   parameters_number = nn.count_parameters_number();
   nn.initialize_parameters(0.0);

   MockPerformanceTerm* mptp = new MockPerformanceTerm(&nn);

   pf.set_user_objective_pointer(mptp);

   gradient = pf.calculate_gradient();

   assert_true(gradient.size() == parameters_number, LOG);
   assert_true(gradient == 0.0, LOG);
}
开发者ID:pappakrishnan,项目名称:OpenNN,代码行数:42,代码来源:performance_functional_test.cpp

示例4: test_set_parameters

void NeuralNetworkTest::test_set_parameters(void) {
  message += "test_set_parameters\n";

  Vector<unsigned> multilayer_perceptron_architecture;
  NeuralNetwork nn;

  unsigned parameters_number;
  Vector<double> parameters;

  // Test

  nn.set_parameters(parameters);

  parameters = nn.arrange_parameters();
  assert_true(parameters.size() == 0, LOG);

  // Test

  multilayer_perceptron_architecture.set(2, 2);
  nn.set(multilayer_perceptron_architecture);

  nn.construct_independent_parameters();

  nn.get_independent_parameters_pointer()->set_parameters_number(2);

  parameters_number = nn.count_parameters_number();

  parameters.set(0.0, 1.0, parameters_number - 1);
  nn.set_parameters(parameters);
  parameters = nn.arrange_parameters();

  assert_true(parameters.size() == parameters_number, LOG);
  assert_true(parameters[0] == 0.0, LOG);
  assert_true(parameters[parameters_number - 1] == parameters_number - 1.0,
              LOG);
}
开发者ID:jrdodson,项目名称:opennn,代码行数:36,代码来源:neural_network_test.cpp

示例5: test_calculate_terms_Jacobian

void SumSquaredErrorTest::test_calculate_terms_Jacobian(void)
{   
   message += "test_calculate_terms_Jacobian\n";

   NumericalDifferentiation nd;

   NeuralNetwork nn;
   Vector<size_t> architecture;
   Vector<double> parameters;

   DataSet ds;

   SumSquaredError sse(&nn, &ds);

   Vector<double> gradient;

   Vector<double> terms;
   Matrix<double> terms_Jacobian;
   Matrix<double> numerical_Jacobian_terms;

   // Test

   nn.set(1, 1);

   nn.initialize_parameters(0.0);

   ds.set(1, 1, 1);

   ds.initialize_data(0.0);

   terms_Jacobian = sse.calculate_terms_Jacobian();

   assert_true(terms_Jacobian.get_rows_number() == ds.get_instances().get_instances_number(), LOG);
   assert_true(terms_Jacobian.get_columns_number() == nn.count_parameters_number(), LOG);
   assert_true(terms_Jacobian == 0.0, LOG);

   // Test 

   nn.set(3, 4, 2);
   nn.initialize_parameters(0.0);

   ds.set(3, 2, 5);
   sse.set(&nn, &ds);
   ds.initialize_data(0.0);

   terms_Jacobian = sse.calculate_terms_Jacobian();

   assert_true(terms_Jacobian.get_rows_number() == ds.get_instances().count_training_instances_number(), LOG);
   assert_true(terms_Jacobian.get_columns_number() == nn.count_parameters_number(), LOG);
   assert_true(terms_Jacobian == 0.0, LOG);

   // Test

   architecture.set(3);
   architecture[0] = 5;
   architecture[1] = 1;
   architecture[2] = 2;

   nn.set(architecture);
   nn.initialize_parameters(0.0);

   ds.set(5, 2, 3);
   sse.set(&nn, &ds);
   ds.initialize_data(0.0);

   terms_Jacobian = sse.calculate_terms_Jacobian();

   assert_true(terms_Jacobian.get_rows_number() == ds.get_instances().count_training_instances_number(), LOG);
   assert_true(terms_Jacobian.get_columns_number() == nn.count_parameters_number(), LOG);
   assert_true(terms_Jacobian == 0.0, LOG);

   // Test

   nn.set(1, 1, 1);
   nn.randomize_parameters_normal();
   parameters = nn.arrange_parameters();

   ds.set(1, 1, 1);
   ds.randomize_data_normal();

   terms_Jacobian = sse.calculate_terms_Jacobian();
   numerical_Jacobian_terms = nd.calculate_Jacobian(sse, &SumSquaredError::calculate_terms, parameters);

   assert_true((terms_Jacobian-numerical_Jacobian_terms).calculate_absolute_value() < 1.0e-3, LOG);

   // Test

   nn.set(2, 2, 2);
   nn.randomize_parameters_normal();
   parameters = nn.arrange_parameters();

   ds.set(2, 2, 2);
   ds.randomize_data_normal();

   terms_Jacobian = sse.calculate_terms_Jacobian();
   numerical_Jacobian_terms = nd.calculate_Jacobian(sse, &SumSquaredError::calculate_terms, parameters);

   assert_true((terms_Jacobian-numerical_Jacobian_terms).calculate_absolute_value() < 1.0e-3, LOG);

   // Test
//.........这里部分代码省略.........
开发者ID:PuchoDeepLearningLabs,项目名称:OpenNN,代码行数:101,代码来源:sum_squared_error_test.cpp

示例6: test_calculate_gradient

void SumSquaredErrorTest::test_calculate_gradient(void)
{
   message += "test_calculate_gradient\n";

   NumericalDifferentiation nd;
   DataSet ds;
   NeuralNetwork nn;
   SumSquaredError sse(&nn, &ds);

   Vector<size_t> architecture;

   Vector<double> parameters;
   Vector<double> gradient;
   Vector<double> numerical_gradient;
   Vector<double> error;

   // Test 

   nn.set(1, 1, 1);
   nn.initialize_parameters(0.0);

   ds.set(1, 1, 1);
   ds.initialize_data(0.0);

   gradient = sse.calculate_gradient();

   assert_true(gradient.size() == nn.count_parameters_number(), LOG);
   assert_true(gradient == 0.0, LOG);

   // Test 

   nn.set(3, 4, 2);
   nn.initialize_parameters(0.0);

   ds.set(3, 2, 5);
   sse.set(&nn, &ds);
   ds.initialize_data(0.0);

   gradient.clear();

   gradient = sse.calculate_gradient();

   assert_true(gradient.size() == nn.count_parameters_number(), LOG);
   assert_true(gradient == 0.0, LOG);

   // Test

   architecture.set(3);
   architecture[0] = 5;
   architecture[1] = 1;
   architecture[2] = 2;

   nn.set(architecture);
   nn.initialize_parameters(0.0);

   ds.set(5, 5, 2);
   sse.set(&nn, &ds);
   ds.initialize_data(0.0);

   gradient.clear();

   gradient = sse.calculate_gradient();

   assert_true(gradient.size() == nn.count_parameters_number(), LOG);
   assert_true(gradient == 0.0, LOG);

   // Test

   nn.set(1, 1, 1);

   nn.initialize_parameters(0.0);

   ds.set(1, 1, 1);

   ds.initialize_data(0.0);

   gradient.clear();

   gradient = sse.calculate_gradient();

   assert_true(gradient.size() == nn.count_parameters_number(), LOG);
   assert_true(gradient == 0.0, LOG);

   // Test 

   nn.set(3, 4, 2);
   nn.initialize_parameters(0.0);

   ds.set(3, 3, 2);
   sse.set(&nn, &ds);
   ds.initialize_data(0.0);

   gradient.clear();

   gradient = sse.calculate_gradient();

   assert_true(gradient.size() == nn.count_parameters_number(), LOG);
   assert_true(gradient == 0.0, LOG);

   // Test
//.........这里部分代码省略.........
开发者ID:PuchoDeepLearningLabs,项目名称:OpenNN,代码行数:101,代码来源:sum_squared_error_test.cpp

示例7: test_calculate_Jacobian_terms

void MeanSquaredErrorTest::test_calculate_Jacobian_terms(void)
{
   message += "test_calculate_Jacobian_terms\n";

   NumericalDifferentiation nd;

   NeuralNetwork nn;
   Vector<unsigned> multilayer_perceptron_architecture;
   Vector<double> parameters;

   DataSet ds;

   MeanSquaredError mse(&nn, &ds);

   Vector<double> objective_gradient;

   Vector<double> evaluation_terms;
   Matrix<double> terms_Jacobian;
   Matrix<double> numerical_Jacobian_terms;

   // Test

   nn.set(1, 1);

   nn.initialize_parameters(0.0);

   ds.set(1, 1, 1);

   ds.initialize_data(0.0);

   terms_Jacobian = mse.calculate_terms_Jacobian();

   assert_true(terms_Jacobian.get_rows_number() == ds.get_instances().count_training_instances_number(), LOG);
   assert_true(terms_Jacobian.get_columns_number() == nn.count_parameters_number(), LOG);
   assert_true(terms_Jacobian == 0.0, LOG);

   // Test 

   nn.set(3, 4, 2);
   nn.initialize_parameters(0.0);

   ds.set(3, 2, 5);
   mse.set(&nn, &ds);
   ds.initialize_data(0.0);

   terms_Jacobian = mse.calculate_terms_Jacobian();

   assert_true(terms_Jacobian.get_rows_number() == ds.get_instances().count_training_instances_number(), LOG);
   assert_true(terms_Jacobian.get_columns_number() == nn.count_parameters_number(), LOG);
   assert_true(terms_Jacobian == 0.0, LOG);

   // Test

   multilayer_perceptron_architecture.set(3);
   multilayer_perceptron_architecture[0] = 2;
   multilayer_perceptron_architecture[1] = 1;
   multilayer_perceptron_architecture[2] = 2;

   nn.set(multilayer_perceptron_architecture);
   nn.initialize_parameters(0.0);

   ds.set(2, 2, 5);
   mse.set(&nn, &ds);
   ds.initialize_data(0.0);

   terms_Jacobian = mse.calculate_terms_Jacobian();

   assert_true(terms_Jacobian.get_rows_number() == ds.get_instances().count_training_instances_number(), LOG);
   assert_true(terms_Jacobian.get_columns_number() == nn.count_parameters_number(), LOG);
   assert_true(terms_Jacobian == 0.0, LOG);

   // Test

   nn.set(1, 1, 1);
   nn.randomize_parameters_normal();
   parameters = nn.arrange_parameters();

   ds.set(1, 1, 1);
   ds.randomize_data_normal();

   terms_Jacobian = mse.calculate_terms_Jacobian();
   numerical_Jacobian_terms = nd.calculate_Jacobian(mse, &MeanSquaredError::calculate_terms, parameters);

   assert_true((terms_Jacobian-numerical_Jacobian_terms).calculate_absolute_value() < 1.0e-3, LOG);

   // Test

   nn.set(2, 2, 2);
   nn.randomize_parameters_normal();
   parameters = nn.arrange_parameters();

   ds.set(2, 2, 2);
   ds.randomize_data_normal();

   terms_Jacobian = mse.calculate_terms_Jacobian();
   numerical_Jacobian_terms = nd.calculate_Jacobian(mse, &MeanSquaredError::calculate_terms, parameters);

   assert_true((terms_Jacobian-numerical_Jacobian_terms).calculate_absolute_value() < 1.0e-3, LOG);

   // Test
//.........这里部分代码省略.........
开发者ID:Quanteek,项目名称:OpenNN-CMake,代码行数:101,代码来源:mean_squared_error_test.cpp

示例8: test_calculate_gradient

void MeanSquaredErrorTest::test_calculate_gradient(void)
{
   message += "test_calculate_gradient\n";

   NumericalDifferentiation nd;

   NeuralNetwork nn;
   Vector<unsigned> multilayer_perceptron_architecture;

   Vector<double> parameters;

   DataSet ds;

   MeanSquaredError mse(&nn, &ds);

   Vector<double> objective_gradient;
   Vector<double> numerical_objective_gradient;
   Vector<double> numerical_differentiation_error;

   // Test

   nn.set(1, 1, 1);

   nn.initialize_parameters(0.0);

   ds.set(1, 1, 1);

   ds.initialize_data(0.0);

   objective_gradient = mse.calculate_gradient();

   assert_true(objective_gradient.size() == nn.count_parameters_number(), LOG);
   assert_true(objective_gradient == 0.0, LOG);

   // Test 

   nn.set(3, 4, 2);
   nn.initialize_parameters(0.0);

   ds.set(3, 2, 5);
   mse.set(&nn, &ds);
   ds.initialize_data(0.0);

   objective_gradient = mse.calculate_gradient();

   assert_true(objective_gradient.size() == nn.count_parameters_number(), LOG);
   assert_true(objective_gradient == 0.0, LOG);

   // Test

   multilayer_perceptron_architecture.set(3);
   multilayer_perceptron_architecture[0] = 2;
   multilayer_perceptron_architecture[1] = 1;
   multilayer_perceptron_architecture[2] = 3;

   nn.set(multilayer_perceptron_architecture);
   nn.initialize_parameters(0.0);

   ds.set(2, 3, 5);
   mse.set(&nn, &ds);
   ds.initialize_data(0.0);

   objective_gradient = mse.calculate_gradient();

   assert_true(objective_gradient.size() == nn.count_parameters_number(), LOG);
   assert_true(objective_gradient == 0.0, LOG);

   // Test

   nn.set(1, 1, 1);

   nn.initialize_parameters(0.0);

   ds.set(1, 1, 1);

   ds.initialize_data(0.0);

   objective_gradient = mse.calculate_gradient();

   assert_true(objective_gradient.size() == nn.count_parameters_number(), LOG);
   assert_true(objective_gradient == 0.0, LOG);

   // Test 

   nn.set(3, 4, 2);
   nn.initialize_parameters(0.0);

   ds.set(3, 2, 5);
   mse.set(&nn, &ds);
   ds.initialize_data(0.0);

   objective_gradient = mse.calculate_gradient();

   assert_true(objective_gradient.size() == nn.count_parameters_number(), LOG);
   assert_true(objective_gradient == 0.0, LOG);

   // Test

   nn.set(1, 1);
   nn.initialize_parameters(1.0);
//.........这里部分代码省略.........
开发者ID:Quanteek,项目名称:OpenNN-CMake,代码行数:101,代码来源:mean_squared_error_test.cpp

示例9: test_calculate_outputs

void NeuralNetworkTest::test_calculate_outputs(void) {
  message += "test_calculate_outputs\n";

  NeuralNetwork nn;

  unsigned inputs_number;
  unsigned outputs_number;

  Vector<unsigned> architecture;

  Vector<double> inputs;
  Vector<double> outputs;

  unsigned parameters_number;

  Vector<double> parameters;

  // Test

  nn.set(3, 4, 2);
  nn.initialize_parameters(0.0);

  inputs.set(3, 0.0);

  outputs = nn.calculate_outputs(inputs);

  assert_true(outputs == 0.0, LOG);

  // Test

  nn.set(1, 1, 1);
  nn.initialize_parameters(0.0);

  inputs.set(1, 0.0);

  outputs = nn.calculate_outputs(inputs);

  assert_true(outputs == 0.0, LOG);

  // Test

  nn.set(1, 1);

  inputs.set(1);
  inputs.randomize_normal();

  parameters = nn.arrange_parameters();

  assert_true(
      nn.calculate_outputs(inputs) == nn.calculate_outputs(inputs, parameters),
      LOG);

  // Test

  nn.set(4, 3, 5);

  inputs.set(4, 0.0);

  parameters_number = nn.count_parameters_number();

  parameters.set(parameters_number, 0.0);

  outputs = nn.calculate_outputs(inputs, parameters);

  assert_true(outputs.size() == 5, LOG);
  assert_true(outputs == 0.0, LOG);

  // Test

  architecture.set(5);

  architecture.randomize_uniform(5, 10);

  nn.set(architecture);

  inputs_number = nn.get_inputs_pointer()->get_inputs_number();
  outputs_number = nn.get_outputs_pointer()->get_outputs_number();

  inputs.set(inputs_number, 0.0);

  parameters_number = nn.count_parameters_number();

  parameters.set(parameters_number, 0.0);

  outputs = nn.calculate_outputs(inputs, parameters);

  assert_true(outputs.size() == outputs_number, LOG);
  assert_true(outputs == 0.0, LOG);
}
开发者ID:jrdodson,项目名称:opennn,代码行数:89,代码来源:neural_network_test.cpp

示例10: test_calculate_Hessian

void NeuralParametersNormTest::test_calculate_Hessian(void)
{
   message += "test_calculate_Hessian\n";

   NumericalDifferentiation nd;
   NeuralNetwork nn;
   NeuralParametersNorm npn(&nn);

   npn.set_neural_parameters_norm_weight(1.0);

   Vector<size_t> architecture;

   Vector<double> parameters;
   Matrix<double> Hessian;
   Matrix<double> numerical_Hessian;
   Matrix<double> error;

   // Test

   nn.set(1, 1, 1);
   nn.initialize_parameters(0.0);

   Hessian = npn.calculate_Hessian();

   assert_true(Hessian.get_rows_number() == nn.count_parameters_number(), LOG);
   assert_true(Hessian.get_columns_number() == nn.count_parameters_number(), LOG);
   assert_true(Hessian == 0.0, LOG);

   // Test

   nn.set(3, 4, 2);
   nn.initialize_parameters(0.0);

   Hessian = npn.calculate_Hessian();

   assert_true(Hessian.get_rows_number() == nn.count_parameters_number(), LOG);
   assert_true(Hessian.get_columns_number() == nn.count_parameters_number(), LOG);
   assert_true(Hessian == 0.0, LOG);

   // Test

   architecture.set(3);
   architecture[0] = 5;
   architecture[1] = 1;
   architecture[2] = 2;

   nn.set(architecture);
   nn.initialize_parameters(0.0);

   npn.set_neural_network_pointer(&nn);

   Hessian = npn.calculate_Hessian();

   assert_true(Hessian.get_rows_number() == nn.count_parameters_number(), LOG);
   assert_true(Hessian.get_columns_number() == nn.count_parameters_number(), LOG);
   assert_true(Hessian == 0.0, LOG);

   // Test

   nn.set(3, 4, 2);
   nn.initialize_parameters(0.0);

   npn.set_neural_network_pointer(&nn);

   Hessian = npn.calculate_Hessian();

   assert_true(Hessian.get_rows_number() == nn.count_parameters_number(), LOG);
   assert_true(Hessian.get_columns_number() == nn.count_parameters_number(), LOG);
   assert_true(Hessian == 0.0, LOG);

   // Test

//   for(size_t i = 0; i < 100; i++)
//   {
//   nn.set(1, 1);

//   nn.randomize_parameters_normal();
//   parameters = nn.arrange_parameters();

//   Hessian = npn.calculate_Hessian();
//   numerical_Hessian = nd.calculate_Hessian(npn, &NeuralParametersNorm::calculate_performance, parameters);
//   error = (Hessian - numerical_Hessian).calculate_absolute_value();

//   std::cout << error << std::endl;

//   assert_true(error < 1.0e-3, LOG);
//   }

}
开发者ID:Artelnics,项目名称:OpenNN,代码行数:89,代码来源:neural_parameters_norm_test.cpp

示例11: test_calculate_gradient

void NeuralParametersNormTest::test_calculate_gradient(void)
{
   message += "test_calculate_gradient\n";

   NumericalDifferentiation nd;
   NeuralNetwork nn;
   NeuralParametersNorm npn(&nn);

   Vector<size_t> architecture;

   Vector<double> parameters;
   Vector<double> gradient;
   Vector<double> numerical_gradient;
   Vector<double> error;

   // Test 

   nn.set(1, 1, 1);
   nn.initialize_parameters(0.0);

   gradient = npn.calculate_gradient();

   assert_true(gradient.size() == nn.count_parameters_number(), LOG);
   assert_true(gradient == 0.0, LOG);

   // Test 

   nn.set(3, 4, 2);
   nn.initialize_parameters(0.0);

   gradient = npn.calculate_gradient();

   assert_true(gradient.size() == nn.count_parameters_number(), LOG);
   assert_true(gradient == 0.0, LOG);

   // Test

   architecture.set(3);
   architecture[0] = 5;
   architecture[1] = 1;
   architecture[2] = 2;

   nn.set(architecture);
   nn.initialize_parameters(0.0);

   npn.set_neural_network_pointer(&nn);

   gradient = npn.calculate_gradient();

   assert_true(gradient.size() == nn.count_parameters_number(), LOG);
   assert_true(gradient == 0.0, LOG);

   // Test 

   nn.set(3, 4, 2);
   nn.initialize_parameters(0.0);

   npn.set_neural_network_pointer(&nn);

   gradient = npn.calculate_gradient();

   assert_true(gradient.size() == nn.count_parameters_number(), LOG);
   assert_true(gradient == 0.0, LOG);


   // Test

   nn.initialize_parameters(1.0);
   parameters = nn.arrange_parameters();

   gradient = npn.calculate_gradient();
   numerical_gradient = nd.calculate_gradient(npn, &NeuralParametersNorm::calculate_regularization, parameters);
   error = (gradient - numerical_gradient).calculate_absolute_value();

   assert_true(error < 1.0e-3, LOG);
}
开发者ID:Artelnics,项目名称:OpenNN,代码行数:76,代码来源:neural_parameters_norm_test.cpp

示例12: test_calculate_gradient

void MinkowskiErrorTest::test_calculate_gradient(void)
{
   message += "test_calculate_gradient\n";

   NumericalDifferentiation nd;

   NeuralNetwork nn;
   Vector<size_t> architecture;

   Vector<double> parameters;

   DataSet ds;

   MinkowskiError me(&nn, &ds);

   Vector<double> gradient;
   Vector<double> numerical_gradient;

   // Test

   nn.set(1,1,1);

   nn.initialize_parameters(0.0);

   ds.set(1,1,1);

   ds.initialize_data(0.0);

   gradient = me.calculate_gradient();

   assert_true(gradient.size() == nn.count_parameters_number(), LOG);
   assert_true(gradient == 0.0, LOG);

   // Test 

   nn.set(3,4,2);
   nn.initialize_parameters(0.0);

   ds.set(3, 2, 5);
   me.set(&nn, &ds);
   ds.initialize_data(0.0);

   gradient = me.calculate_gradient();

   assert_true(gradient.size() == nn.count_parameters_number(), LOG);
   assert_true(gradient == 0.0, LOG);

   // Test

   architecture.set(3);
   architecture[0] = 2;
   architecture[1] = 1;
   architecture[2] = 3;

   nn.set(architecture);
   nn.initialize_parameters(0.0);

   ds.set(2, 3, 5);
   me.set(&nn, &ds);
   ds.initialize_data(0.0);

   gradient = me.calculate_gradient();

   assert_true(gradient.size() == nn.count_parameters_number(), LOG);
   assert_true(gradient == 0.0, LOG);

   // Test

   nn.set(1,1,1);

   nn.initialize_parameters(0.0);

   ds.set(1,1,1);

   ds.initialize_data(0.0);

   gradient = me.calculate_gradient();

   assert_true(gradient.size() == nn.count_parameters_number(), LOG);
   assert_true(gradient == 0.0, LOG);

   // Test 

   nn.set(3,4,2);
   nn.initialize_parameters(0.0);

   ds.set(3,2,5);
   me.set(&nn, &ds);
   ds.initialize_data(0.0);

   gradient = me.calculate_gradient();

   assert_true(gradient.size() == nn.count_parameters_number(), LOG);
   assert_true(gradient == 0.0, LOG);

   // Test

   architecture.set(3);
   architecture[0] = 2;
   architecture[1] = 1;
//.........这里部分代码省略.........
开发者ID:PuchoDeepLearningLabs,项目名称:OpenNN,代码行数:101,代码来源:minkowski_error_test.cpp

示例13: test_calculate_Hessian_approximation

void LevenbergMarquardtAlgorithmTest::test_calculate_Hessian_approximation(void)
{
   message += "test_calculate_Hessian_approximation\n";

   NumericalDifferentiation nd;

   NeuralNetwork nn;

   size_t parameters_number;

   Vector<double> parameters;

   DataSet ds;

   PerformanceFunctional pf(&nn, &ds);

   pf.set_error_type(PerformanceFunctional::SUM_SQUARED_ERROR);

   Matrix<double> terms_Jacobian;
   Matrix<double> Hessian;
   Matrix<double> numerical_Hessian;
   Matrix<double> Hessian_approximation;

   LevenbergMarquardtAlgorithm lma(&pf);
   
   // Test

   nn.set(1, 2);
   nn.initialize_parameters(0.0);

   parameters_number = nn.count_parameters_number();

   ds.set(1,2,2);
   ds.initialize_data(0.0);

   terms_Jacobian = pf.calculate_terms_Jacobian();

   Hessian_approximation = lma.calculate_Hessian_approximation(terms_Jacobian);

   assert_true(Hessian_approximation.get_rows_number() == parameters_number, LOG);
   assert_true(Hessian_approximation.get_columns_number() == parameters_number, LOG);
   assert_true(Hessian_approximation.is_symmetric(), LOG);

   // Test

   pf.set_error_type(PerformanceFunctional::NORMALIZED_SQUARED_ERROR);

   nn.set(1,1,2);
   nn.randomize_parameters_normal();

   parameters_number = nn.count_parameters_number();

   ds.set(1,2,3);
   ds.randomize_data_normal();

   terms_Jacobian = pf.calculate_terms_Jacobian();

   Hessian_approximation = lma.calculate_Hessian_approximation(terms_Jacobian);

   assert_true(Hessian_approximation.get_rows_number() == parameters_number, LOG);
   assert_true(Hessian_approximation.get_columns_number() == parameters_number, LOG);
   assert_true(Hessian_approximation.is_symmetric(), LOG);

   // Test

   nn.set(2);

   nn.randomize_parameters_normal();

   MockErrorTerm* mptp = new MockErrorTerm(&nn);

   pf.set_user_error_pointer(mptp);

   terms_Jacobian = pf.calculate_terms_Jacobian();

   Hessian = pf.calculate_Hessian();

   lma.set_damping_parameter(0.0);

   assert_true((lma.calculate_Hessian_approximation(terms_Jacobian) - Hessian).calculate_absolute_value() < 1.0e-3, LOG);

   // Test

   pf.set_error_type(PerformanceFunctional::SUM_SQUARED_ERROR);

   ds.set(1, 1, 1);

   ds.randomize_data_normal();

   nn.set(1, 1);

   parameters = nn.arrange_parameters();

   nn.randomize_parameters_normal();

   numerical_Hessian = nd.calculate_Hessian(pf, &PerformanceFunctional::calculate_performance, parameters);

   terms_Jacobian = pf.calculate_terms_Jacobian();

   Hessian_approximation = lma.calculate_Hessian_approximation(terms_Jacobian);
//.........这里部分代码省略.........
开发者ID:Artelnics,项目名称:OpenNN,代码行数:101,代码来源:levenberg_marquardt_algorithm_test.cpp

示例14: test_calculate_Hessian

void PerformanceFunctionalTest::test_calculate_Hessian(void) {
  message += "test_calculate_Hessian\n";

  NeuralNetwork nn;
  unsigned parameters_number;
  Vector<double> parameters;

  PerformanceFunctional pf(&nn);

  pf.destruct_all_terms();
  pf.set_regularization_type(
      PerformanceFunctional::NEURAL_PARAMETERS_NORM_REGULARIZATION);

  Matrix<double> Hessian;

  nn.set(1, 1, 1);

  nn.initialize_parameters(0.0);

  parameters_number = nn.count_parameters_number();
  parameters = nn.arrange_parameters();

  Hessian = pf.calculate_Hessian(parameters);

  assert_true(Hessian.get_rows_number() == parameters_number, LOG);
  assert_true(Hessian.get_columns_number() == parameters_number, LOG);

  nn.set();

  nn.initialize_parameters(0.0);

  parameters_number = nn.count_parameters_number();
  parameters = nn.arrange_parameters();

  Hessian = pf.calculate_Hessian(parameters);

  assert_true(Hessian.get_rows_number() == parameters_number, LOG);
  assert_true(Hessian.get_columns_number() == parameters_number, LOG);

  nn.set(1, 1);

  nn.initialize_parameters(0.0);

  parameters_number = nn.count_parameters_number();
  parameters = nn.arrange_parameters();

  Hessian = pf.calculate_Hessian(parameters);

  assert_true(Hessian.get_rows_number() == parameters_number, LOG);
  assert_true(Hessian.get_columns_number() == parameters_number, LOG);

  // Test

  parameters_number = nn.count_parameters_number();
  nn.initialize_parameters(0.0);

  MockPerformanceTerm* mptp = new MockPerformanceTerm(&nn);

  pf.set_user_objective_pointer(mptp);

  Hessian = pf.calculate_Hessian();

  assert_true(Hessian.get_rows_number() == parameters_number, LOG);
  assert_true(Hessian.get_columns_number() == parameters_number, LOG);
}
开发者ID:jrdodson,项目名称:opennn,代码行数:65,代码来源:performance_functional_test.cpp


注:本文中的NeuralNetwork::count_parameters_number方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。