當前位置: 首頁>>代碼示例>>Python>>正文


Python MLP.train方法代碼示例

本文整理匯總了Python中mlp.MLP.train方法的典型用法代碼示例。如果您正苦於以下問題:Python MLP.train方法的具體用法?Python MLP.train怎麽用?Python MLP.train使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mlp.MLP的用法示例。


在下文中一共展示了MLP.train方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import train [as 別名]
def main():
    dataset = [((0, 0), (0, 1)), ((0, 1), (1, 0)), ((1, 0), (1, 0)), ((1, 1), (0, 1))]

    #dtanh = lambda o: 1 - o ** 2
    dsigm = lambda o: o * (1 - o)

    activation_functions = (np.vectorize(sigmoid), np.vectorize(sigmoid))
    #activation_functions = (np.tanh, np.tanh)
    derivation_functions = (np.vectorize(dsigm), np.vectorize(dsigm))
    #derivation_functions = (np.vectorize(dtanh), np.vectorize(dtanh))

    m = MLP((2, 3, 2), activation_functions, derivation_functions)
    m.train(dataset, epsilon=0, alpha=0.9, eta=.25, epochs=2500)

    for i in range(len(dataset)):
        o = m.feedForward(dataset[i][0])
        print(i, dataset[i][0], encode(o.argmax(), len(o)), ' (expected ', dataset[i][1], ')')
開發者ID:martianboy,項目名稱:mlp,代碼行數:19,代碼來源:xor.py

示例2: test_xor

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import train [as 別名]
    def test_xor(self):
        xor = MLP()
        xor.add_layer(Layer(2))
        xor.add_layer(Layer(2))
        xor.add_layer(Layer(1))

        xor.init_network()

        xor_patterns = [
            ([0, 0], [0]),
            ([0, 1], [1]),
            ([1, 0], [1]),
            ([1, 1], [0]),
        ]

        xor.train(xor_patterns)
        for inp, outp in xor_patterns:
            self.assertEqual(xor.run(inp), outp)
開發者ID:jozo-styrak,項目名稱:mlp,代碼行數:20,代碼來源:xor_test.py

示例3: main

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import train [as 別名]
def main():
    xor = MLP()
    cnf = lambda: 0
    xor.add_layer(Layer(2))
    xor.add_layer(Layer(2, cnf))
    xor.add_layer(Layer(1))

    xor.add_bias()
    xor.init_network()

    xor.patterns = [
        ([0, 0], [0]),
        ([0, 1], [1]),
        ([1, 0], [1]),
        ([1, 1], [0]),
    ]

    print xor.train(xor.patterns)
    for inp, target in xor.patterns:
        tolerance = 0.1
        computed = xor.forward(inp)
        error = abs(computed[0] - target[0])
        print 'input: %s target: %s, output: %s, error: %.4f' % (inp,
            target, computed, error)
開發者ID:RiweiChen,項目名稱:ML_Code_Practice,代碼行數:26,代碼來源:xor_bias.py

示例4: testMLP

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import train [as 別名]
	def testMLP(self):
		'''
		Using MLP of one hidden layer and one softmax layer
		'''
		conf_filename = './snippet_mlp.conf'
		start_time = time.time()
		configer = MLPConfiger(conf_filename)
		mlpnet = MLP(configer, verbose=True)
		end_time = time.time()
		pprint('Time used to build the architecture of MLP: %f seconds' % (end_time-start_time))
		# Training
		start_time = time.time()
		for i in xrange(configer.nepoch):
			cost, accuracy = mlpnet.train(self.snippet_train_set, self.snippet_train_label)
			pprint('epoch %d, cost = %f, accuracy = %f' % (i, cost, accuracy))
		end_time = time.time()
		pprint('Time used for training MLP network on Snippet task: %f minutes' % ((end_time-start_time)/60))
		# Test
		test_size = self.snippet_test_label.shape[0]
		prediction = mlpnet.predict(self.snippet_test_set)
		accuracy = np.sum(prediction == self.snippet_test_label) / float(test_size)
		pprint('Test accuracy: %f' % accuracy)
開發者ID:appscluster,項目名稱:sentiment-CNN,代碼行數:24,代碼來源:exp_snippet.py

示例5: testMLP

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import train [as 別名]
	def testMLP(self):
		'''
		Sentiment analysis task for sentence representation using MLP, 
		with one hidden layer and one softmax layer.
		'''
		conf_filename = './sentiment_mlp.conf'
		start_time = time.time()
		configer = MLPConfiger(conf_filename)
		mlpnet = MLP(configer, verbose=True)
		end_time = time.time()
		pprint('Time used to build the architecture of MLP: %f seconds.' % (end_time-start_time))
		# Training
		start_time = time.time()
		for i in xrange(configer.nepoch):
			rate = 2.0 / ((1.0 + i/500) ** 2)
			cost, accuracy = mlpnet.train(self.senti_train_set, self.senti_train_label, rate)
			pprint('epoch %d, cost = %f, accuracy = %f' % (i, cost, accuracy))
		end_time = time.time()
		pprint('Time used for training MLP network on Sentiment analysis task: %f minutes.' % ((end_time-start_time)/60))
		# Test
		prediction = mlpnet.predict(self.senti_test_set)
		accuracy = np.sum(prediction == self.senti_test_label) / float(self.test_size)
		pprint('Test accuracy: %f' % accuracy)
開發者ID:appscluster,項目名稱:sentiment-CNN,代碼行數:25,代碼來源:exp_sentiment.py

示例6: MLP

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import train [as 別名]
    project = DB.getProject('mlpnew') #evalmlp')

    model = MLP(
            id=project.id,
            rng=rng,
            input=x,
            momentum=0.0,
            offline=True,
            n_in=project.patchSize**2,
            n_hidden=project.hiddenUnits,
            n_out=len(project.labels),
            train_time=project.trainTime,
            #batch_size=project.batchSize,
            batch_size=50,
            patch_size=project.patchSize,
            path=project.path_offline)


    data = Data( project, offline=True, n_train_samples=700000, n_valid_samples=5000)
    #model.train(offline=True, data=data, mean=project.mean, std=project.std)
    #data.load(project )

    #print data.get_pixel_count(project)
    #exit(1)

    n_iterations = 5000
    for iteration in xrange(n_iterations):
        print 'iteration:', iteration
        model.train(data=data, offline=True, mean=project.mean, std=project.std)
開發者ID:Rhoana,項目名稱:icon,代碼行數:31,代碼來源:offline.py

示例7: mlp

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import train [as 別名]
def mlp(fn, X, y, _):
    mlp = MLP(fn, [50, 50, 50, 50], batchsize=BATCHSIZE)
    losses = mlp.train(ITERATIONS, X, y, plot=PLOT)
    return losses
開發者ID:gwthomas,項目名稱:processor-network,代碼行數:6,代碼來源:main.py

示例8: map

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import train [as 別名]
    rbmstack.run(0,cfg.weight_updates, mbp)

if cfg.finetune:

    # clean up RBM parts which are not needed anymore
    map(lambda x:x.deallocPChain(), rbmstack.layers)
    map(lambda x:x.dealloc(),       rbmstack.layers)

    weights = map(lambda x: x.mat,    rbmstack.weights)
    biases  = map(lambda x: x.bias_hi, rbmstack.weights)
    from mlp import MLP
    pymlp = MLP(cfg, weights,biases)

    pymlp.preEpochHook = lambda mlp,epoch: epoch%10==0 and mlp.runMLP(mbp_test, cfg.test_batchsize,epoch)
    try:
        pymlp.train(mbp,cfg.finetune_epochs, cfg.finetune_batch_size, cfg.finetune_rprop)
    except KeyboardInterrupt:
        pass
    map(lambda x:x.alloc(),     rbmstack.layers)
    map(lambda x:x.allocPChain(), rbmstack.layers)
    rbmstack.saveAllLayers("-finetune")
    pymlp.saveLastLayer()

if cfg.headless:
   cp.exitCUDA()
   sys.exit(0)
PLT_NUM=1
import matplotlib.pyplot as plt

#### calculate maps_bottom into py. yeah it's a dirty hack, i know
px=cfg.px
開發者ID:0rchard,項目名稱:CUV,代碼行數:33,代碼來源:caller.py

示例9: __init__

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import train [as 別名]
class TrainerValidator:

	def __init__(self, k, nb_epochs, H1, H2, nu, mu, batchsize, data):
		self.k = k

		self.data = data

		self.H1 = H1
		self.H2 = H2
		self.mu = mu
		self.nu = nu 
		self.batchsize = batchsize
	
		self.mlp = MLP(H1,H2,576, nu, mu, batchsize, self.k)
		self.error = Error()
		self.NUM_EPOCH = nb_epochs

		self.validation_error = sp.zeros(self.NUM_EPOCH+1)
		self.misclassified_val = sp.zeros(self.NUM_EPOCH+1)
		self.training_error = sp.zeros(self.NUM_EPOCH+1)
		self.misclassified_train = sp.zeros(self.NUM_EPOCH+1)

	def trainAndClassify(self):
		converge = 0
		a = 4
		var_thresh = 0.005
		early_stopping = 0
		for i in range(self.NUM_EPOCH+1):
			self.data.shuffleData()
			self.mlp.train(self.data.train_left, self.data.train_right, self.data.train_cat)
			_, _, _, _, _, results_train, _, _, _, _, _, _ = self.mlp.forward_pass(self.data.train_left, self.data.train_right)
			results_val, results_classif = self.mlp.classify(self.data.val_left, self.data.val_right)

			self.training_error[i], self.misclassified_train[i] = self.error.norm_total_error(results_train, self.data.train_cat, self.k)
			self.validation_error[i], self.misclassified_val[i] = self.error.norm_total_error(results_val, self.data.val_cat, self.k)

			print "Epoch #"+str(i)+" Ratio of misclassified: "+str(self.misclassified_val[i])+" - Error: "+str(self.validation_error[i])

			
			# Early stopping
			if early_stopping :
				if i > 0 :
					if (self.validation_error[i]>(self.validation_error[i-1]*(1-var_thresh))) :
						converge += 1
					else :
						if converge > 0 :
							converge -= 1/2

				if converge>=a :
					print "Triggering early stopping - Cause : increasing(overfitting) or convergence of the error has been detected"
					break
		#self.mlp.test_gradient(self.data.val_left, self.data.val_right, self.data.val_cat)

	def plotResults(self):
		error_fig = plt.figure()
		ax1 = error_fig.add_subplot(111)
		ax1.plot(self.validation_error, label='validation error')
		ax1.plot(self.training_error, label='training error')
		ax1.set_ylabel('error')
		ax1.set_xlabel('epoch')

		title = "k=%d H1=%d H2=%d mu=%f nu=%f batchsize=%d std(val)=%f std(err)=%f" % (self.k, self.H1, self.H2, self.mu, self.nu, self.batchsize, sp.std(self.validation_error), sp.std(self.training_error) )
		error_fig.suptitle(title)

		plt.legend()

		filename = "k=%d-H1=%d-H2=%d-mu=%f-nu=%f-batchsize=%d-nb_epoch=%d" % (self.k,self.H1, self.H2, self.mu, self.nu, self.batchsize, self.NUM_EPOCH)

		plt.savefig('results/'+filename+"-error.png")
		

		mis_fig = plt.figure()
		ax2 = mis_fig.add_subplot(111)
		ax2.plot(self.misclassified_val, label='misclassified ratio (validation)')
		ax2.plot(self.misclassified_train, label='misclassified ratio (training)')
		title = "k=%d H1=%d H2=%d mu=%f nu=%f batchsize=%d std(val)=%f std(err)=%f" % (self.k, self.H1, self.H2, self.mu, self.nu, self.batchsize, sp.std(self.misclassified_val), sp.std(self.misclassified_train) )
		mis_fig.suptitle(title)
		#ax2.set_xlim([1,self.NUM_EPOCH])
		ax2.set_ylabel('misclassified')
		ax2.set_xlabel('epoch')
		plt.legend()
		plt.savefig('results/'+filename+"-misclassified.png")
		#plt.show()

	def getMLP(self) :
		return self.mlp
		

		
開發者ID:quentinms,項目名稱:PCML---Mini-Project,代碼行數:88,代碼來源:train_validate.py


注:本文中的mlp.MLP.train方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。