當前位置: 首頁>>代碼示例>>Python>>正文


Python MLP.packParam方法代碼示例

本文整理匯總了Python中mlp.MLP.packParam方法的典型用法代碼示例。如果您正苦於以下問題:Python MLP.packParam方法的具體用法?Python MLP.packParam怎麽用?Python MLP.packParam使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mlp.MLP的用法示例。


在下文中一共展示了MLP.packParam方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: MLP

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import packParam [as 別名]
from LR import Logisticlayer
from mlp import MLP

if __name__=="__main__":
  numpy.set_printoptions(threshold=numpy.nan)
  input_dim = 4
  output_dim = 3
  sample_size = 100
  #X=numpy.random.normal(0,1,(sample_size,input_dim))
  #temp,Y=numpy.nonzero(numpy.random.multinomial(1,[1.0/output_dim]*output_dim,size=sample_size))
 
  mlp = MLP(4,3,[10,10])
  with open('debug_nnet.pickle') as f:
    init_param = pickle.load(f)
  init_param = numpy.concatenate([i.flatten() for i in init_param])
  mlp.packParam(init_param)
  
  with open('debug_data.pickle') as f:
    data = pickle.load(f)
  X = data[0]
  Y = data[1]
  
  with open('HJv.pickle') as f:
    HJv_theano = pickle.load(f)
  num_param = numpy.sum(mlp.sizes)
  batch_size = 100
  
  grad,train_nll,train_error=mlp.get_gradient(X,Y,batch_size)
  
  
  d = 1.0*numpy.ones((num_param,))
開發者ID:lelouchmatlab,項目名稱:convex-hf,代碼行數:33,代碼來源:check_Gv.py

示例2: xrange

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import packParam [as 別名]
    
    delta, next_init, after_cost = mlp.cg(-grad, train_cg_X_cur, train_cg_Y_cur, batch_size, next_init, 1)
    
    Gv = mlp.get_Gv(train_cg_X_cur,train_cg_Y_cur,batch_size,delta)
    
    delta_cost = numpy.dot(delta,grad+0.5*Gv)
    
    before_cost = mlp.quick_cost(numpy.zeros((num_param,)), train_cg_X_cur, train_cg_Y_cur, batch_size)
    
    l2norm = numpy.linalg.norm(Gv + mlp._lambda*delta + grad)
    
    print "Residual Norm: ",l2norm
    print 'Before cost: %f, After cost: %f'%(before_cost,after_cost)
    param = mlp.flatParam() + delta
    
    mlp.packParam(param)
    
    tune_lambda = (after_cost - before_cost)/delta_cost
    
    if tune_lambda < 0.25:
      mlp._lambda = mlp._lambda*1.5
    elif tune_lambda > 0.75:
      mlp._lambda = mlp._lambda/1.5

    print "Training   NNL: %f, Error: %f"%(train_nll,train_error)
    nll=[]
    error=[]
    for batch_index in xrange(n_valid_batches):
      X=valid_X[batch_index*batch_size:(batch_index+1)*batch_size,:]
      Y=valid_Y[batch_index*batch_size:(batch_index+1)*batch_size]
      mlp.forward(X)
開發者ID:lelouchmatlab,項目名稱:convex-hf,代碼行數:33,代碼來源:test.py


注:本文中的mlp.MLP.packParam方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。