當前位置: 首頁>>代碼示例>>Python>>正文


Python MLP.negative_log_likelihood方法代碼示例

本文整理匯總了Python中mlp.MLP.negative_log_likelihood方法的典型用法代碼示例。如果您正苦於以下問題:Python MLP.negative_log_likelihood方法的具體用法?Python MLP.negative_log_likelihood怎麽用?Python MLP.negative_log_likelihood使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mlp.MLP的用法示例。


在下文中一共展示了MLP.negative_log_likelihood方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_mlp

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import negative_log_likelihood [as 別名]
def test_mlp(dataset, hyper):
    train_set_x, train_set_y = dataset.sharedTrain
    valid_set_x, valid_set_y = dataset.sharedValid
    test_set_x, test_set_y = dataset.sharedTest

    n_train_batches = train_set_x.get_value(borrow=True).shape[0] / hyper.batchSize
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] / hyper.batchSize
    n_test_batches = test_set_x.get_value(borrow=True).shape[0] / hyper.batchSize

    validationFrequency = min(n_train_batches, hyper.patience / 2)

    print '... building the model'

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch
    x = T.matrix('x')  # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
                        # [int] labels

    rng = numpy.random.RandomState(1234)

    # construct the MLP class
    classifier = MLP(rng=rng, input=x, n_in=dataset.n_in,
                     n_hidden=hyper.nHidden1, n_out=dataset.n_out)

    # the cost we minimize during training is the negative log likelihood of
    # the model plus the regularization terms (L1 and L2); cost is expressed
    # here symbolically
    cost = classifier.negative_log_likelihood(y) \
         + hyper.L1Reg * classifier.L1 \
         + hyper.L2Reg * classifier.L2_sqr

    # compiling a Theano function that computes the mistakes that are made
    # by the model on a minibatch
    test_model = theano.function(inputs=[index],
            outputs=classifier.errors(y),
            givens={
                x: test_set_x[index * hyper.batchSize:(index + 1) * hyper.batchSize],
                y: test_set_y[index * hyper.batchSize:(index + 1) * hyper.batchSize]})

    validate_model = theano.function(inputs=[index],
            outputs=classifier.errors(y),
            givens={
                x: valid_set_x[index * hyper.batchSize:(index + 1) * hyper.batchSize],
                y: valid_set_y[index * hyper.batchSize:(index + 1) * hyper.batchSize]})

    # compute the gradient of cost with respect to theta (sotred in params)
    # the resulting gradients will be stored in a list gparams
    gparams = []
    for param in classifier.params:
        gparam = T.grad(cost, param)
        gparams.append(gparam)

    # specify how to update the parameters of the model as a list of
    # (variable, update expression) pairs
    updates = []
    # given two list the zip A = [a1, a2, a3, a4] and B = [b1, b2, b3, b4] of
    # same length, zip generates a list C of same size, where each element
    # is a pair formed from the two lists :
    #    C = [(a1, b1), (a2, b2), (a3, b3), (a4, b4)]
    for param, gparam in zip(classifier.params, gparams):
        updates.append((param, param - hyper.learningRate * gparam))

    # compiling a Theano function `train_model` that returns the cost, but
    # in the same time updates the parameter of the model based on the rules
    # defined in `updates`
    train_model = theano.function(inputs=[index], outputs=cost,
            updates=updates,
            givens={
                x: train_set_x[index * hyper.batchSize:(index + 1) * hyper.batchSize],
                y: train_set_y[index * hyper.batchSize:(index + 1) * hyper.batchSize]})

    ###############
    # TRAIN MODEL #
    ###############
    print '... training'

    best_params = None
    best_validation_loss = numpy.inf
    best_iter = 0
    test_score = 0.
    start_time = time.time()

    epoch = 0
    done_looping = False
    patience = hyper.patience

    while (epoch < hyper.numberEpochs) and (not done_looping):
        epoch = epoch + 1
        print('epoch %i, time %0.2fm' % (epoch, (time.clock() - start_time) / 60.0))
        for minibatch_index in xrange(n_train_batches):

            minibatch_avg_cost = train_model(minibatch_index)
            # iteration number
            iter = (epoch - 1) * n_train_batches + minibatch_index

            if (iter + 1) % validationFrequency == 0:
                # compute zero-one loss on validation set
                validation_losses = [validate_model(i) for i
                                     in xrange(n_valid_batches)]
#.........這裏部分代碼省略.........
開發者ID:echogecho,項目名稱:cifar-ten,代碼行數:103,代碼來源:C10mlp2a.py

示例2: xrange

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import negative_log_likelihood [as 別名]
                y: valid_set_y[index * batch_size:(index + 1) * batch_size]})

    # calculate current loss
    svm_train_losses = [svm_train_loss(i) for i in xrange(n_train_batches)]
    svm_train_score = numpy.mean(svm_train_losses)
    svm_validation_losses = [svm_validate_model(i) for i in xrange(n_valid_batches)]
    svm_validation_score = numpy.mean(validation_losses)
    svm_test_losses = [svm_test_model(i) for i in xrange(n_test_batches)]
    svm_test_score = numpy.mean(svm_test_losses)
    print "SVM: Training: %.3f%%, Validation: %.3f%%, Test: %.3f%%" % \
        (svm_train_score * 100., svm_validation_score * 100., svm_test_score * 100.)

    print 'Training SVM logreg layer...'

    # train logistic regression layer
    cost = svm_classifier.negative_log_likelihood(y) \
         + L1_reg * classifier.L1 \
         + L2_reg * classifier.L2_sqr

    # update only logreg parameters using gradient descent
    svm_updates = {param: param - learning_rate * T.grad(cost, param) 
                   for param in svm_classifier.logRegressionLayer.params}
    svm_train_model = theano.function(inputs=[index], outputs=cost,
            updates=svm_updates,
            givens={
                x: train_set_x[index * batch_size:(index + 1) * batch_size],
                y: train_set_y[index * batch_size:(index + 1) * batch_size]})


    # early-stopping parameters
    patience = 10000  # look as this many examples regardless
開發者ID:surban,項目名稱:mmntest1,代碼行數:33,代碼來源:mmn.py

示例3: test_mlp

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import negative_log_likelihood [as 別名]
def test_mlp(learning_rate=0.01, L1_reg=0.00, L2_reg=0.0001, n_epochs=500,
             batch_size=20, n_hidden=3):

    numpy.random.seed(1)
    rng = numpy.random.RandomState(1234)

    # 集団內の要素數 (散布図の通り、同じ色の2集団で 1クラスを形成)
    N = 100

    # 説明変數
    x = numpy.matrix([[0] * N + [1] * N + [0] * N + [1] * N,
                      [0] * N + [1] * N + [1] * N + [0] * N], dtype=numpy.float32).T
    x += numpy.random.rand(N * 4, 2) / 2
    # 目的変數
    y = numpy.array([0] * N * 2 + [1] * N * 2, dtype=numpy.int32)

    # 2 次元にプロット
    fig = plt.figure()
    ax = fig.add_subplot(111)
    colors = ['red'] * N * 2 + ['blue'] * N * 2
    ax.scatter(x[:, 0], x[:, 1], color=colors)
    plt.show()

    # Theano の共有変數として宣言
    x_data = theano.shared(value=x, name='x', borrow=True)
    y_data = theano.shared(value=y, name='y', borrow=True)

    n_train_batches = x_data.get_value(borrow=True).shape[0] / batch_size

    index = T.lscalar()
    x = T.matrix('x')
    y = T.ivector('y')

    # MLPインスタンスを生成
    classifier = MLP(rng=rng, input=x, n_in=2, n_hidden=n_hidden, n_out=2)

    # 損失関數
    cost = (
        classifier.negative_log_likelihood(y)
        + L1_reg * classifier.L1
        + L2_reg * classifier.L2_sqr
    )

    # 各係數行列、バイアスの更新処理
    gparams = [T.grad(cost, param) for param in classifier.params]
    updates = [
        (param, param - learning_rate * gparam)
        for param, gparam in zip(classifier.params, gparams)
    ]

    train_model = theano.function(
        inputs=[index],
        outputs=cost,
        updates=updates,
        givens={
            x: x_data[index * batch_size: (index + 1) * batch_size],
            y: y_data[index * batch_size: (index + 1) * batch_size]
        }
    )

    # 隠れ層の出力を取得
    apply_hidden = theano.function(inputs=[x], outputs=classifier.hiddenLayer.output)
    labels = y_data.eval()

    # 3 次元にプロット
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')

    # 表示領域 / カメラアングルを指定
    ax.set_xlabel('x0')
    ax.set_xlim(-1, 1.5)
    ax.set_ylabel('x1')
    ax.set_ylim(-0.5, 1.5)
    ax.set_zlabel('z')
    ax.set_zlim(-1, 1)
    ax.view_init(azim=30, elev=30)

    # 座標 x0, x1 について 分離平麵の z 座標を計算
    def calc_z(classifier, x0, x1):
        w = classifier.logRegressionLayer.W.get_value()
        b = classifier.logRegressionLayer.b.get_value()
        z = ((w[0, 0] - w[0, 1]) * x0 + (w[1, 0] - w[1, 1]) * x1 + b[0] - b[1]) / (w[2, 1] - w[2, 0])
        return z

    objs = []
    colors = ['red'] * N * 2 + ['blue'] * N * 2

    for epoch in range(n_epochs):
        for minibatch_index in xrange(n_train_batches):
            train_model(minibatch_index)

        # 10 エポックごとに描畫
        if epoch % 10 == 0:
            z_data = apply_hidden(x_data.get_value())

            s = ax.scatter(z_data[:, 0], z_data[:, 1], z_data[:, 2], color=colors)
            zx0_min = z_data[:, 0].min()
            zx0_max = z_data[:, 0].max()
            zx1_min = z_data[:, 1].min()
            zx1_max = z_data[:, 1].max()
#.........這裏部分代碼省略.........
開發者ID:magoroku15,項目名稱:DeepLearningTutorials,代碼行數:103,代碼來源:vis_ml2.py

示例4: fun_mlp

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import negative_log_likelihood [as 別名]
def fun_mlp(shared_args, private_args, this_queue, that_queue):
    '''
    shared_args 
    contains neural network parameters

    private_args
    contains parameters for process run on each gpu

    this_queue and that_queue are used for synchronization between processes.
    '''

    learning_rate = shared_args['learning_rate']
    n_epochs = shared_args['n_epochs']
    dataset = shared_args['dataset']
    batch_size = shared_args['batch_size']
    L1_reg = shared_args['L1_reg']
    L2_reg = shared_args['L2_reg']
    n_hidden = shared_args['n_hidden']

    ####
    # pycuda and zmq environment
    drv.init()
    dev = drv.Device(private_args['ind_gpu'])
    ctx = dev.make_context()
    sock = zmq.Context().socket(zmq.PAIR)

    if private_args['flag_client']:
        sock.connect('tcp://localhost:5000')
    else:
        sock.bind('tcp://*:5000')
    ####

    ####
    # import theano related
    import theano.sandbox.cuda
    theano.sandbox.cuda.use(private_args['gpu'])

    import theano
    import theano.tensor as T

    from logistic_sgd import load_data
    from mlp import MLP

    import theano.misc.pycuda_init
    import theano.misc.pycuda_utils

    ####


    datasets = load_data(dataset)

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] / batch_size

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print '... building the model'

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch
    x = T.matrix('x')  # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
    # [int] labels

    rng = np.random.RandomState(1234)

    classifier = MLP(rng=rng, input=x, n_in=28 * 28,
                     n_hidden=n_hidden, n_out=10)

    cost = (classifier.negative_log_likelihood(y)
            + L1_reg * classifier.L1
            + L2_reg * classifier.L2_sqr)

    validate_model = theano.function(
        inputs=[index],
        outputs=classifier.errors(y),
        givens={x: valid_set_x[index * batch_size:(index + 1) * batch_size],
                y: valid_set_y[index * batch_size:(index + 1) * batch_size]}
    )

    gparams = [T.grad(cost, param) for param in classifier.params]

    updates = [(param, param - learning_rate * gparam)
               for param, gparam in zip(classifier.params, gparams)]

    train_model = theano.function(
        inputs=[index],
        outputs=cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size: (index + 1) * batch_size],
            y: train_set_y[index * batch_size: (index + 1) * batch_size]})
    ####
    # setting pycuda and
#.........這裏部分代碼省略.........
開發者ID:ZhangAustin,項目名稱:theano_multi_gpu,代碼行數:103,代碼來源:dual_mlp.py

示例5: MLP

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import negative_log_likelihood [as 別名]
L2_reg=0.0001 
n_epochs=1000
dataset='train.mat' 
batch_size=1000 
n_hidden=50

classifier = MLP(
        rng=rng,
        input=x,
        n_in=3000,
        n_hidden=n_hidden,
        n_out=2
    )

cost = (
        classifier.negative_log_likelihood(y)
        + L1_reg * classifier.L1
        + L2_reg * classifier.L2_sqr
    )

validate_model = theano.function(
        inputs=[x,y],
        outputs=classifier.errors(y)
    )

test_model = theano.function(
        inputs=[x],
        outputs=classifier.y_pred
    )

test_model_proba = theano.function(
開發者ID:Johayon,項目名稱:BGD-Work,代碼行數:33,代碼來源:script2.py

示例6: mlp_mnist_train

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import negative_log_likelihood [as 別名]
def mlp_mnist_train(learning_rate=0.01, L1_reg=0.00, L2_reg=0.0001, n_epochs=1000, dataset='mnist.pkl.gz', batch_size=20, n_hidden=500):

    datasets = load_data(dataset)

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    n_train_batches = train_set_x.get_value(borrow=True).shape[0] // batch_size
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] // batch_size
    n_test_batches = test_set_x.get_value(borrow=True).shape[0] // batch_size

    print('... building the model')

    index = T.lscalar()  # index to a [mini]batch
    x = T.matrix('x')  # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
                                                # [int] labels
    rng = np.random.RandomState(1234)

    classifier = MLP(
        rng=rng,
        input=x,
        n_in=28*28,
        n_hidden=n_hidden,
        n_out=10
    )

    cost = (
        classifier.negative_log_likelihood(y) + L1_reg*classifier.L1 + L2_reg*classifier.L2_sqr
    )


    test_model = theano.function(
        inputs=[index],
        outputs=classifier.errors(y),
        givens={
            x: test_set_x[index * batch_size:(index + 1) * batch_size],
            y: test_set_y[index * batch_size:(index + 1) * batch_size]
        }
    )

    validate_model = theano.function(
        inputs=[index],
        outputs=classifier.errors(y),
        givens={
            x: valid_set_x[index * batch_size:(index + 1) * batch_size],
            y: valid_set_y[index * batch_size:(index + 1) * batch_size]
        }
    )

    gparams = [T.grad(cost, param) for param in classifier.params]

    updates = [
        (param, param - learning_rate * gparam) for param, gparam in zip(classifier.params, gparams)
    ]

    train_model = theano.function(
        inputs=[index],
        outputs=cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size: (index + 1) * batch_size],
            y: train_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )


    print('... training')
    patience = 10000  # look as this many examples regardless
    patience_increase = 2  # wait this much longer when a new best is

    improvement_threshold = 0.995  # a relative improvement of this much is
    validation_frequency = min(n_train_batches, patience // 2)

    best_validation_loss = np.inf
    best_iter = 0
    test_score = 0.
    start_time = timeit.default_timer()

    epoch = 0
    done_looping = False

    while (epoch < n_epochs) and (not done_looping):
        epoch = epoch + 1
        for minibatch_index in range(n_train_batches):
            minibatch_avg_cost = train_model(minibatch_index)
            iter = (epoch - 1) * n_train_batches + minibatch_index

            if (iter + 1) % validation_frequency == 0:
                validation_losses = [validate_model(i) for i in range(n_valid_batches)]
                this_validation_loss = np.mean(validation_losses)
                print(
                    'epoch %i, minibatch %i/%i, validation error %f %%' % 
                    ( 
                        epoch, 
                        minibatch_index + 1,
                        n_train_batches,
                        this_validation_loss * 100.
                    )
#.........這裏部分代碼省略.........
開發者ID:bdepwgjqet,項目名稱:fondue,代碼行數:103,代碼來源:mlp_mnist.py

示例7: do_gd

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import negative_log_likelihood [as 別名]
def do_gd(etaVal, epochs, layers, train_set, 
        valid_set=None, test_set=None, L2_reg=0, batch_size=100, scale=1, noise_scale=1):
    '''
    batch_size = 100
    0 L2 regularization (by default)
    function returns training error and validation error after each epoch
    '''
    SEED = 5318
    np.random.seed(SEED)
    X = T.matrix('X')
    Y = T.ivector('Y')
    index = T.lscalar('index')
    noise = T.matrix('noise')
    eta = T.fscalar('eta')
    n_scale = T.fscalar('noise_scale')
    
    n_in = layers[0]
    n_out = layers[-1]

    # Get the datasets
    trainX, trainY = train_set
    validX, validY = valid_set
    testX, testY   = test_set

    # Get the dataset sizes
    train_dims = trainX.get_value(borrow=True).shape
    train_size = trainX.get_value(borrow=True).shape[0]
    valid_size = validX.get_value(borrow=True).shape[0]
    test_size  = testX.get_value(borrow=True).shape[0]


    classifier = MLP(
                    rng = np.random.RandomState(SEED),
                    inpt = X,
                    layers = layers,
                    scale = scale
                )
    cost = (
            classifier.negative_log_likelihood(Y) 
            + L2_reg * classifier.L2_sqr # using the L2 regularization
        )

    gparams = [T.grad(cost, param) for param in classifier.params]

    
    # Random number generator for the gaussian noise
    # theano_rng = RandomStreams(int(np.random.rand()*100))
    train_model = theano.function(
                 inputs = [index, eta, noise],
                 outputs = cost,
                 updates = [(param, param - eta * gparam) 
                    for param, gparam in zip(classifier.params, gparams)],
                 givens = {
                         # train_dims[1] is the number of columns (features) in the training data
                         # apparently trainX gets first added to the random numbers before its sliced
                         # Hence we use 784 (features) random numbers and not 100 (batch_size) random numbers
                         # X : trainX[index * batch_size : (index + 1) * batch_size] + theano_rng.normal(size=(train_dims[1],))* n_scale,
                         X : trainX[index * batch_size : (index + 1) * batch_size] + noise,
                         Y : trainY[index * batch_size : (index + 1) * batch_size]
                     }
             )
    
    validate_model = theano.function(
                inputs = [index],
                outputs = classifier.errors(Y),
                givens = {
                         X : validX[index * batch_size : (index + 1) * batch_size],
                         Y : validY[index * batch_size : (index + 1) * batch_size]
                }
            )
    
    test_model = theano.function(
                inputs = [index],
                outputs = classifier.errors(Y),
                givens = {
                         X : testX[index * batch_size : (index + 1) * batch_size],
                         Y : testY[index * batch_size : (index + 1) * batch_size]
                }
            )


    train_error = []
    valid_error = []
    test_error  = []

    # Calculate the number of batches.
    n_train_batches = int(train_size / batch_size)
    n_val_batches = int(valid_size / batch_size)
    n_test_batches = int(test_size / batch_size)

    ANNEAL = 10*train_size # rate at which learning parameter "eta" is reduced as iterations increase ( momentum )
    print("Anneal = {}".format(ANNEAL))
    
    start_time = timeit.default_timer()
    learn_rate = etaVal

    # Initial Gaussian Noise
    gaussian_noise = 0
    for epoch in xrange(epochs):
        # shuffle data, reset the seed so that trainX and trainY are randomized
#.........這裏部分代碼省略.........
開發者ID:kunalghosh,項目名稱:T-61.6050-Special-Course-in-Deep-Learning,代碼行數:103,代碼來源:ex4.py

示例8: main

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import negative_log_likelihood [as 別名]
def main(learning_rate=0.01, L1_reg=0.00, L2_reg=0.0001, n_epochs=1000,
             dataset='mnist.pkl.gz', batch_size=20, n_hidden=[500, 500]):
    """
    Demonstrate stochastic gradient descent optimization for a multilayer
    perceptron

    This is demonstrated on MNIST.

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
    gradient

    :type L1_reg: float
    :param L1_reg: L1-norm's weight when added to the cost (see
    regularization)

    :type L2_reg: float
    :param L2_reg: L2-norm's weight when added to the cost (see
    regularization)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type dataset: string
    :param dataset: the path of the MNIST dataset file from
                 http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz


   """
    if add_noise==True:
        datasets = load_data(dataset, nb_classes=nb_classes, binarize=binarize,
                             noise_prop=noise_proportion)
    else:
        datasets = load_data(dataset, nb_classes=nb_classes, binarize=binarize)

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    print('Showing data samples')
    if nb_classes == 2:
        labels = ['odd', 'even']
    else:
        labels = [0,1,2,3,4,5,6,7,8,9]
    imshow_samples(train_set_x.get_value(), train_set_y,
            valid_set_x.get_value(), valid_set_y, num_samples=4, labels=labels)
    plt.pause(0.0001)
    diary.save_figure(plt, filename='samples', extension='svg')

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0] // batch_size
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] // batch_size
    n_test_batches = test_set_x.get_value(borrow=True).shape[0] // batch_size

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print('... building the model')

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch
    x = T.matrix('x')  # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
                        # [int] labels

    rng = numpy.random.RandomState(1234)

    # construct the MLP class
    classifier = MLP(
        rng=rng,
        input=x,
        n_in=28 * 28,
        n_hidden=n_hidden,
        n_out=nb_classes
    )

    # start-snippet-4
    # the cost we minimize during training is the negative log likelihood of
    # the model plus the regularization terms (L1 and L2); cost is expressed
    # here symbolically
    cost = (
        classifier.negative_log_likelihood(y)
        + L1_reg * classifier.L1
        + L2_reg * classifier.L2_sqr
    )
    # end-snippet-4

    # compiling a Theano function that computes the mistakes that are made
    # by the model on a minibatch
    test_model = theano.function(
        inputs=[index],
        outputs=classifier.errors(y),
        givens={
            x: test_set_x[index * batch_size:(index + 1) * batch_size],
            y: test_set_y[index * batch_size:(index + 1) * batch_size]
        }
    )

    validate_model = theano.function(
        inputs=[index],
#.........這裏部分代碼省略.........
開發者ID:perellonieto,項目名稱:deep_calibration,代碼行數:103,代碼來源:train.py

示例9: test_mlp

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import negative_log_likelihood [as 別名]
def test_mlp(learning_rate=0.01, L1_reg=0.00, L2_reg=0.0001, n_epochs=1000,
             dataset='mnist.pkl.gz', batch_size=20, n_hidden=500):
    """
    Demonstrate stochastic gradient descent optimization for a multilayer
    perceptron

    This is demonstrated on MNIST.

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
    gradient

    :type L1_reg: float
    :param L1_reg: L1-norm's weight when added to the cost (see
    regularization)

    :type L2_reg: float
    :param L2_reg: L2-norm's weight when added to the cost (see
    regularization)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type dataset: string
    :param dataset: the path of the MNIST dataset file from
                 http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz


   """
    datasets = load_data(dataset)

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] / batch_size
    n_test_batches = test_set_x.get_value(borrow=True).shape[0] / batch_size

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print '... building the model'

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch
    x = T.matrix('x')  # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
                        # [int] labels

    rng = numpy.random.RandomState(1234)

    # construct the MLP class
    classifier = MLP(
        rng=rng,
        input=x,
        n_in=28 * 28,
        n_hidden=n_hidden,
        n_out=10
    )

    # start-snippet-4
    # the cost we minimize during training is the negative log likelihood of
    # the model plus the regularization terms (L1 and L2); cost is expressed
    # here symbolically
    cost = (
        classifier.negative_log_likelihood(y)
        + L1_reg * classifier.L1
        + L2_reg * classifier.L2_sqr
    )
    # end-snippet-4

    # compiling a Theano function that computes the mistakes that are made
    # by the model on a minibatch
    test_model = theano.function(
        inputs=[index],
        outputs=classifier.errors(y),
        givens={
            x: test_set_x[index * batch_size:(index + 1) * batch_size],
            y: test_set_y[index * batch_size:(index + 1) * batch_size]
        }
    )

    validate_model = theano.function(
        inputs=[index],
        outputs=classifier.errors(y),
        givens={
            x: valid_set_x[index * batch_size:(index + 1) * batch_size],
            y: valid_set_y[index * batch_size:(index + 1) * batch_size]
        }
    )

    # start-snippet-5
    # compute the gradient of cost with respect to theta (sotred in params)
    # the resulting gradients will be stored in a list gparams
    gparams = [T.grad(cost, param) for param in classifier.params]

    # specify how to update the parameters of the model as a list of
    # (variable, update expression) pairs
#.........這裏部分代碼省略.........
開發者ID:socurites,項目名稱:deeplearning,代碼行數:103,代碼來源:mlp_run.py

示例10: train_mlp

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import negative_log_likelihood [as 別名]
def train_mlp(L1_reg = 0.0, L2_reg = 0.0000, num_batches_per_bunch = 512, batch_size = 1, num_bunches_queue = 5, offset = 0, path_name = '/afs/inf.ed.ac.uk/user/s12/s1264845/scratch/s1264845/data/'):
    

    voc_list = Vocabulary(path_name + 'train')
    voc_list.vocab_create()
    vocab = voc_list.vocab
    vocab_size = voc_list.vocab_size
    
    voc_list_valid = Vocabulary(path_name + 'valid')
    voc_list_valid.vocab_create()
    count = voc_list_valid.count

    voc_list_test = Vocabulary(path_name + 'test')
    voc_list_test.vocab_create()
    no_test_tokens = voc_list_test.count
    print 'The number of sentenses in test set:', no_test_tokens
 
    #print 'number of words in valid data:', count 
    dataprovider_train = DataProvider(path_name + 'train', vocab, vocab_size )
    dataprovider_valid = DataProvider(path_name + 'valid', vocab, vocab_size )
    dataprovider_test = DataProvider(path_name + 'test', vocab, vocab_size )

    #learn_list = [0.1, 0.1, 0.1, 0.75, 0.5, 0.25, 0.125, 0.0625, 0]
    exp_name = 'fine_tuning.hdf5'
    posterior_path = 'log_likelihoods'
    print '..building the model'

    #symbolic variables for input, target vector and batch index
    index = T.lscalar('index')
    x = T.fmatrix('x')
    y = T.ivector('y')
    learning_rate = T.fscalar('learning_rate') 

    #theano shares variables for train, valid and test
    train_set_x = theano.shared(numpy.empty((1,1), dtype='float32'), allow_downcast = True)
    train_set_y = theano.shared(numpy.empty((1), dtype = 'int32'), allow_downcast = True)
    
    valid_set_x = theano.shared(numpy.empty((1,1), dtype='float32'), allow_downcast = True)
    valid_set_y = theano.shared(numpy.empty((1), dtype = 'int32'), allow_downcast = True)
    
    test_set_x = theano.shared(numpy.empty((1,1), dtype='float32'), allow_downcast = True)
    test_set_y = theano.shared(numpy.empty((1), dtype = 'int32'), allow_downcast = True)
    
    rng = numpy.random.RandomState(1234) 
   
    classifier = MLP(rng = rng, input = x, n_in = vocab_size, n_hidden1 = 30, n_hidden2 = 60 , n_out = vocab_size)
    #classifier = MLP(rng = rng, input = x, n_in = vocab_size, n_hidden = 60, n_out = vocab_size)

    cost = classifier.negative_log_likelihood(y) + L1_reg * classifier.L1 + L2_reg * classifier.L2_sqr
    
    #constructor for learning rate class
    learnrate_schedular = LearningRateNewBob(start_rate=0.001, scale_by=.5, max_epochs=9999,\
                                    min_derror_ramp_start=.1, min_derror_stop=.1, init_error=100.)

    #learnrate_schedular = LearningRateList(learn_list)

    frame_error = classifier.errors(y)
    likelihood = classifier.sum(y)

    #test model
    test_model = theano.function(inputs = [index], outputs = likelihood,  \
                                 givens = {x: test_set_x[index * batch_size:(index + 1) * batch_size],
                                           y: test_set_y[index * batch_size:(index + 1) * batch_size]})
    #validation_model
    validate_model = theano.function(inputs = [index], outputs = [frame_error, likelihood], \
                                     givens = {x: valid_set_x[index * batch_size:(index + 1) * batch_size],
                                               y: valid_set_y[index * batch_size:(index + 1) * batch_size]})

    gradient_param = []
    #calculates the gradient of cost with respect to parameters 
    for param in classifier.params:
        gradient_param.append(T.cast(T.grad(cost, param), 'float32'))
        
    updates = []
    
    for param, gradient in zip(classifier.params, gradient_param):
        updates.append((param, param - learning_rate * gradient))
    
    #training_model
    train_model = theano.function(inputs = [index, theano.Param(learning_rate, default = 0.01)], outputs = cost, updates = updates, \
                                 givens = {x: train_set_x[index * batch_size:(index + 1) * batch_size],
                                           y: train_set_y[index * batch_size:(index + 1) * batch_size]})
   

    #theano.printing.pydotprint(train_model, outfile = "pics/train.png", var_with_name_simple = True) 
    #path_save = '/afs/inf.ed.ac.uk/user/s12/s1264845/scratch/s1264845/mlp/saved_weights/' 
    print '.....training'    
    best_valid_loss = numpy.inf    
    epoch = 1
    start_time = time.time()
    while(learnrate_schedular.get_rate() != 0):
	
	print 'learning_rate:', learnrate_schedular.get_rate()
        print 'epoch_number:', learnrate_schedular.epoch
        
        frames_showed, progress = 0, 0
        start_epoch_time = time.time()
        
        tqueue = TNetsCacheSimple.make_queue()
        cache = TNetsCacheSimple(tqueue, shuffle_frames = True, offset=0, \
#.........這裏部分代碼省略.........
開發者ID:andersonhaynes,項目名稱:nnlm,代碼行數:103,代碼來源:nn_lm_new.py

示例11: __init__

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import negative_log_likelihood [as 別名]
    def __init__(self, ndata=1000, n_hidden=10, L1_reg=0.00, L2_reg=0.0001):
        
        train_x, train_t, test_x, test_t = get_data()
        train_x = train_x[:ndata,:]
        train_t = train_t[:ndata]
        train_t = np.asarray(train_t, dtype="int32")
    
        self.L1_reg = L1_reg
        self.L2_reg = L2_reg
        
        print "range of target values: ", set(train_t)
        # allocate symbolic variables for the data.  
        # Make it shared so it cab be passed only once 
        x = theano.shared(value=train_x, name='x')  # the data is presented as rasterized images
        t = theano.shared(value=train_t, name='t')  # the labels are presented as 1D vector of
                            # [int] labels
    
        
        rng = numpy.random.RandomState(1234)
        
        # construct the MLP class
        classifier = MLP(
            rng=rng,
            input=x,
            n_in=28 * 28,
            n_hidden=n_hidden,
            n_out=10
        )
        self.classifier = classifier
    
        # the cost we minimize during training is the negative log likelihood of
        # the model plus the regularization terms (L1 and L2); cost is expressed
        # here symbolically
        cost = (
            classifier.negative_log_likelihood(t)
            + L1_reg * classifier.L1
            + L2_reg * classifier.L2_sqr
        )

        # compute the gradient of cost with respect to theta (sotred in params)
        # the resulting gradients will be stored in a list gparams
        gparams = [T.grad(cost, param) for param in classifier.params]
    
        outputs = [cost] + gparams
        self.theano_cost_gradient = theano.function(
               inputs=(),
               outputs=outputs
               )
        
        # compute the errors applied to test set
        self.theano_testset_errors = theano.function(
               inputs=(),
               outputs=self.classifier.errors(t),
               givens={
                       x: test_x,
                       t: test_t
                       }                                          
               )
    #    res = get_gradient(train_x, train_t)
    #    print "result"
    #    print res
    #    print ""
    
        self.nparams = sum([p.get_value().size for p in classifier.params])
        self.param_sizes = [p.get_value().size for p in classifier.params]
        self.param_shapes = [p.get_value().shape for p in classifier.params]
開發者ID:js850,項目名稱:machine_learning_landscapes,代碼行數:68,代碼來源:pele_mpl.py

示例12: jobman_entrypoint

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import negative_log_likelihood [as 別名]
def jobman_entrypoint(state, channel):
    global TEST_RUN
    minibatch_size = state.minibatch_size

    print_every = 100000
    COMPUTE_ERROR_EVERY = 10**7 / minibatch_size # compute error every 10 million examples
    if TEST_RUN:
        print_every = 100
        COMPUTE_ERROR_EVERY = 1000 / minibatch_size

    print "entrypoint, state is"
    print state

    ######################
    # select dataset and dataset subset, plus adjust epoch num to make number
    # of examples seen independent of dataset
    # exemple: pour le cas DIGITS_ONLY, il faut changer le nombre d'époques
    # et pour le cas NIST pur (pas de transformations), il faut multiplier par 100
    # en partant car on a pas les variations

    # compute this in terms of the P07 dataset size (=80M)
    MINIBATCHES_TO_SEE = state.n_epochs * 8 * (10**6) / minibatch_size

    if state.train_on == 'NIST' and state.train_subset == 'ALL':
        dataset_obj = datasets.nist_all()
    elif state.train_on == 'NIST' and state.train_subset == 'DIGITS_ONLY':
        dataset_obj = datasets.nist_digits()
    elif state.train_on == 'NISTP' and state.train_subset == 'ALL':
        dataset_obj = datasets.PNIST07()
    elif state.train_on == 'NISTP' and state.train_subset == 'DIGITS_ONLY':
        dataset_obj = PNIST07_digits
    elif state.train_on == 'P07' and state.train_subset == 'ALL':
        dataset_obj = datasets.nist_P07()
    elif state.train_on == 'P07' and state.train_subset == 'DIGITS_ONLY':
        dataset_obj = datasets.P07_digits

    dataset = dataset_obj
    
    if state.train_subset == 'ALL':
        n_classes = 62
    elif state.train_subset == 'DIGITS_ONLY':
        n_classes = 10
    else:
        raise NotImplementedError()

    ###############################
    # construct model

    print "constructing model..."
    x     = T.matrix('x')
    y     = T.ivector('y')

    rng = numpy.random.RandomState(state.rng_seed)

    # construct the MLP class
    model = MLP(rng = rng, input=x, n_in=N_INPUTS,
                        n_hidden_layers = state.n_hidden_layers,
                        n_hidden = state.n_hidden, n_out=n_classes)


    # cost and training fn
    cost = T.mean(model.negative_log_likelihood(y)) \
                 + state.L1_reg * model.L1 \
                 + state.L2_reg * model.L2_sqr 

    print "L1, L2: ", state.L1_reg, state.L2_reg

    gradient_nll_wrt_params = []
    for param in model.params:
        gparam = T.grad(cost, param)
        gradient_nll_wrt_params.append(gparam)

    learning_rate = 10**float(state.learning_rate_log10)
    print "Learning rate", learning_rate

    train_updates = {}
    for param, gparam in zip(model.params, gradient_nll_wrt_params):
        train_updates[param] = param - learning_rate * gparam

    train_fn = theano.function([x,y], cost, updates=train_updates)

    #######################
    # create series
    basedir = os.getcwd()

    h5f = tables.openFile(os.path.join(basedir, "series.h5"), "w")

    series = {}
    add_error_series(series, "training_error", h5f,
                    index_names=('minibatch_idx',), use_accumulator=True,
                    reduce_every=REDUCE_EVERY)

    ##########################
    # training loop

    start_time = time.clock()

    print "begin training..."
    print "will train for", MINIBATCHES_TO_SEE, "examples"

#.........這裏部分代碼省略.........
開發者ID:sauravbiswasiupr,項目名稱:image_transformations,代碼行數:103,代碼來源:job.py


注:本文中的mlp.MLP.negative_log_likelihood方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。