本文整理匯總了Python中mlp.MLP類的典型用法代碼示例。如果您正苦於以下問題:Python MLP類的具體用法?Python MLP怎麽用?Python MLP使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了MLP類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: create_brain
def create_brain():
topology = [24,48,24,12,1]
brain = MLP(topology)
brain = load_training('data/train.csv', brain)
brain.saveNetwork()
return brain
示例2: train
def train(self, X, Y, learning_rate=0.1, n_epochs=100, report_frequency=10, lambda_l2=0.0):
self.report_frequency = report_frequency
# allocate symbolic variables for the data
x = T.matrix('x')
y = T.matrix('y')
# put the data in shared memory
self.shared_x = theano.shared(numpy.asarray(X, dtype=theano.config.floatX))
self.shared_y = theano.shared(numpy.asarray(Y, dtype=theano.config.floatX))
rng = numpy.random.RandomState(1234)
# initialize the mlp
mlp = MLP(rng=rng, input=x, n_in=self.n_in, n_out=self.n_out,
n_hidden=self.n_hidden, activation=self.activation)
# define the cost function, possibly with regularizing term
if lambda_l2>0.0:
cost = mlp.cost(y) + lambda_l2*mlp.l2
else:
cost = mlp.cost(y)
# compute the gradient of cost with respect to theta (stored in params)
# the resulting gradients will be stored in a list gparams
gparams = [T.grad(cost, param) for param in mlp.params]
updates = [(param, param - learning_rate * gparam)
for param, gparam in zip(mlp.params, gparams) ]
# compiling a Theano function `train_model` that returns the cost, but
# at the same time updates the parameter of the model based on the rules
# defined in `updates`
train_model = theano.function(
inputs=[],
outputs=cost,
updates=updates,
givens={
x: self.shared_x,
y: self.shared_y
}
)
#define function that returns model prediction
self.predict_model = theano.function(
inputs=[mlp.input], outputs=mlp.y_pred)
###############
# TRAIN MODEL #
###############
epoch = 0
while (epoch < n_epochs):
epoch = epoch + 1
epoch_cost = train_model()
if epoch % self.report_frequency == 0:
print("epoch: %d cost: %f" % (epoch, epoch_cost))
示例3: fit_model
def fit_model(self, X, Y, num_classes):
if self.modeltype == "mlp":
classifier = MLP(self.input_size, self.hidden_sizes, num_classes)
else:
classifier = RNN(self.input_size, self.hidden_size, num_classes)
train_func = classifier.get_train_func(self.learning_rate)
for num_iter in range(self.max_iter):
for x, y in zip(X, Y):
train_func(x, y)
return classifier
示例4: load_nn_dwl
def load_nn_dwl(paramFileName):
paramList = numpy.load(open(paramFileName, 'r'))
W1, b1, W2, b2 = paramList['arr_0']
n_input = len(W1)
n_hidden = len(W2)
n_out = len(W2[0])
x = T.matrix('x')
rng = numpy.random.RandomState(1234)
classifier = MLP(rng=rng, input=x, n_in=n_input, n_hidden=n_hidden, n_out=n_out)
classifier.load_model_params(paramList['arr_0'])
return classifier
示例5: __init__
def __init__(self, n_ins, hidden_layers_sizes, n_outs,
numpy_rng=None, theano_rng=None):
MLP.__init__(self, n_ins, hidden_layers_sizes, n_outs,
numpy_rng, theano_rng)
# labels (used for minibatch sgd during RL)
self.y = T.vector('y')
# actions (for each label, there is a corresponding
# number here representing the ouput node value that
# it should be compared to during SGD
self.a = T.ivector('a')
# The training error
self.training_cost = T.sum(T.sqr(self.outLayer.output[T.arange(self.a.shape[0]),self.a] - self.y))
示例6: main
def main():
dataset = [((0, 0), (0, 1)), ((0, 1), (1, 0)), ((1, 0), (1, 0)), ((1, 1), (0, 1))]
#dtanh = lambda o: 1 - o ** 2
dsigm = lambda o: o * (1 - o)
activation_functions = (np.vectorize(sigmoid), np.vectorize(sigmoid))
#activation_functions = (np.tanh, np.tanh)
derivation_functions = (np.vectorize(dsigm), np.vectorize(dsigm))
#derivation_functions = (np.vectorize(dtanh), np.vectorize(dtanh))
m = MLP((2, 3, 2), activation_functions, derivation_functions)
m.train(dataset, epsilon=0, alpha=0.9, eta=.25, epochs=2500)
for i in range(len(dataset)):
o = m.feedForward(dataset[i][0])
print(i, dataset[i][0], encode(o.argmax(), len(o)), ' (expected ', dataset[i][1], ')')
示例7: setUp
def setUp(self):
xor = MLP()
xor.add_layer(Layer(2))
xor.add_layer(Layer(2))
xor.add_layer(Layer(1))
xor.init_network()
xor.patterns = [([0, 0], [0]), ([0, 1], [1]), ([1, 0], [1]), ([1, 1], [0])]
self.xor = xor
示例8: test_xor
def test_xor(self):
xor = MLP()
xor.add_layer(Layer(2))
xor.add_layer(Layer(2))
xor.add_layer(Layer(1))
xor.init_network()
xor_patterns = [
([0, 0], [0]),
([0, 1], [1]),
([1, 0], [1]),
([1, 1], [0]),
]
xor.train(xor_patterns)
for inp, outp in xor_patterns:
self.assertEqual(xor.run(inp), outp)
示例9: __init__
class CWS:
def __init__(self, s):
self.mlp = MLP(s['ne'], s['de'], s['win'], s['nh'], 4, s['L2_reg'], np.random.RandomState(s['seed']))
self.s = s
def fit(self, lex, label):
s = self.s
n_sentences = len(lex)
n_train = int(n_sentences * (1. - s['valid_size']))
s['clr'] = s['lr']
best_f = 0
for e in xrange(s['n_epochs']):
shuffle([lex, label], s['seed'])
train_lex, valid_lex = lex[:n_train], lex[n_train:]
train_label, valid_label = label[:n_train], label[n_train:]
tic = time.time()
cost = 0
for i in xrange(n_train):
if len(train_lex[i]) == 2: continue
words = np.asarray(contextwin(train_lex[i], s['win']), dtype = 'int32')
labels = [0] + train_label[i] + [0]
y_pred = self.mlp.predict(words)
cost += self.mlp.fit(words, [0]+y_pred, [0]+labels, s['clr'])
self.mlp.normalize()
if s['verbose']:
print '[learning] epoch %i >> %2.2f%%' % (e+1, (i+1)*100./n_train), 'completed in %s << \r' % time_format(time.time() - tic),
sys.stdout.flush()
print '[learning] epoch %i >> cost = %f' % (e+1, cost / n_train), ', %s used' % time_format(time.time() - tic)
pred_y = self.predict(valid_lex)
p, r, f = evaluate(pred_y, valid_label)
print ' P: %2.2f%% R: %2.2f%% F: %2.2f%%' % (p*100., r*100., f*100.)
'''
if f > best_f:
best_f = f
self.save()
'''
def predict(self, lex):
s = self.s
y = [self.mlp.predict(np.asarray(contextwin(x, s['win'])).astype('int32'))[1:-1] for x in lex]
return y
def save(self):
if not os.path.exists('params'): os.mkdir('params')
self.mlp.save()
def load(self):
self.mlp.load()
示例10: main
def main():
training, dev = get_data()
window_size = 5
n_input = window_size
n_hidden = 100
n_output = 1
A = 1
num_hidden_layers = 1
mlp = MLP(n_input, num_hidden_layers, n_hidden, n_output)
n_epochs = 50
step = False
l = loss(mlp, training, window_size, window_size/2)
print "initial loss: " + str(l)
for j in range(0, n_epochs):
print "epoch " + str(j)
random.shuffle(training)
c = 0
for xs, y in training:
if c == 10:
break
c += 1
if step:
train(mlp, xs, y, window_size, window_size/2)
else:
train(mlp, xs, y, window_size, 1)
if step:
error(mlp, training, window_size, window_size/2)
else:
error(mlp, training, window_size, 1)
if step:
l = loss(mlp, training, window_size, window_size/2)
else:
l = loss(mlp, training, window_size, 1)
print "loss: " + str(l)
eta = A / float(j/float(n_epochs) + 1)
mlp.eta = eta
print "lr:", mlp.eta
print "Getting Dev Accuracy..."
if step:
error(mlp, dev, window_size, window_size/2)
else:
error(mlp, dev, window_size, 1)
示例11: MLP_VAD
class MLP_VAD(object):
def __init__(self, model_file):
rng = np.random.RandomState(1234)
self.x = T.matrix('x')
self.classifier = MLP(
rng=rng,
input=self.x,
n_in=200,
n_hidden=180,
n_out=2
)
self.classifier.load_model(model_file)
def classify(self, fs, sig):
if fs != SAMPLE_RATE:
sig = downsample(fs, sig)
num_samples = int(WINDOW_SIZE * SAMPLE_RATE)
num_frames = len(sig)/num_samples
sig = sig[0:num_frames*num_samples].reshape((num_frames, num_samples))
sig = sig * np.hamming(num_samples)
spec = np.abs(np.fft.fft(sig)) # spectrum of signal
shared_x = theano.shared(np.asarray(spec, dtype=theano.config.floatX), borrow=True)
index = T.lscalar() # index to a [mini]batch
predict_model = theano.function(
inputs=[index],
outputs=self.classifier.y_pred,
givens={
self.x: shared_x[index:index + 1],
}
)
# classify each frame
predicted_values = [predict_model(i)[0] for i in xrange(num_frames)]
return np.asarray(predicted_values)
示例12: __init__
def __init__(self,input_size,output_size,n_hidden=500,learning_rate=0.01,
L1_reg=0.00, L2_reg=0.0001,
n_epochs=1000,batch_size=20):
self.learning_rate = learning_rate
self.L1_reg = L1_reg
self.L2_reg = L2_reg
self.n_epochs = n_epochs
self.batch_size=batch_size
self.n_hidden = n_hidden
self.x = T.matrix('x')
self.mlp = MLP(input = self.x, n_in = input_size, \
n_hidden = n_hidden, n_out = output_size)
示例13: test_add_layer
def test_add_layer(self):
a = MLP()
with self.assertRaises(AssertionError):
a.add_layer('')
a.add_layer(Layer(1))
a.add_layer(Layer(2))
a.add_layer(Layer(3))
self.assertEqual(len(a.layers), 3)
for l in a.layers:
self.assertIsInstance(l, Layer)
示例14: testMLP
def testMLP(self):
'''
Using MLP of one hidden layer and one softmax layer
'''
conf_filename = './snippet_mlp.conf'
start_time = time.time()
configer = MLPConfiger(conf_filename)
mlpnet = MLP(configer, verbose=True)
end_time = time.time()
pprint('Time used to build the architecture of MLP: %f seconds' % (end_time-start_time))
# Training
start_time = time.time()
for i in xrange(configer.nepoch):
cost, accuracy = mlpnet.train(self.snippet_train_set, self.snippet_train_label)
pprint('epoch %d, cost = %f, accuracy = %f' % (i, cost, accuracy))
end_time = time.time()
pprint('Time used for training MLP network on Snippet task: %f minutes' % ((end_time-start_time)/60))
# Test
test_size = self.snippet_test_label.shape[0]
prediction = mlpnet.predict(self.snippet_test_set)
accuracy = np.sum(prediction == self.snippet_test_label) / float(test_size)
pprint('Test accuracy: %f' % accuracy)
示例15: __init__
def __init__(self, model_file):
rng = np.random.RandomState(1234)
self.x = T.matrix('x')
self.classifier = MLP(
rng=rng,
input=self.x,
n_in=200,
n_hidden=180,
n_out=2
)
self.classifier.load_model(model_file)