當前位置: 首頁>>代碼示例>>Python>>正文


Python MLP.add_layer方法代碼示例

本文整理匯總了Python中mlp.MLP.add_layer方法的典型用法代碼示例。如果您正苦於以下問題:Python MLP.add_layer方法的具體用法?Python MLP.add_layer怎麽用?Python MLP.add_layer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mlp.MLP的用法示例。


在下文中一共展示了MLP.add_layer方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: setUp

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import add_layer [as 別名]
    def setUp(self):
        xor = MLP()
        xor.add_layer(Layer(2))
        xor.add_layer(Layer(2))
        xor.add_layer(Layer(1))

        xor.init_network()

        xor.patterns = [([0, 0], [0]), ([0, 1], [1]), ([1, 0], [1]), ([1, 1], [0])]
        self.xor = xor
開發者ID:xieyanfu,項目名稱:mlp-2,代碼行數:12,代碼來源:xor_test.py

示例2: test_activate

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import add_layer [as 別名]
 def test_activate(self):
     a = MLP()
     a.add_layer(Layer(3))
     a.add_layer(Layer(2))
     a.init_network()
     a.layers[0].values = [1, 1, 1]
     a.layers[0].weights[0][0] = 1
     a.layers[0].weights[1][0] = -1
     a.layers[0].weights[2][0] = 1
     a.layers[0].weights[0][1] = -0.1
     a.layers[0].weights[1][1] = -0.5
     a.layers[0].weights[2][1] = 1
     a._activate()
     self.assertGreater(a.layers[1].values[0], 0.5)
     self.assertLess(a.layers[1].values[1], 0.5)
開發者ID:jozo-styrak,項目名稱:mlp,代碼行數:17,代碼來源:mlp_test.py

示例3: test_init_network

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import add_layer [as 別名]
 def test_init_network(self):
     a = MLP()
     a.add_layer(Layer(1))
     a.add_layer(Layer(2))
     a.add_layer(Layer(3))
     a.init_network()
     self.assertIsNone(a.layers[0].prev)
     self.assertIsNotNone(a.layers[0].weights)
     self.assertIsNotNone(a.layers[0].next)
     self.assertIsNotNone(a.layers[1].prev)
     self.assertIsNotNone(a.layers[1].weights)
     self.assertIsNotNone(a.layers[1].next)
     self.assertIsNotNone(a.layers[2].prev)
     self.assertIsNone(a.layers[2].weights)
     self.assertIsNone(a.layers[2].next)
開發者ID:jozo-styrak,項目名稱:mlp,代碼行數:17,代碼來源:mlp_test.py

示例4: test_xor

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import add_layer [as 別名]
    def test_xor(self):
        xor = MLP()
        xor.add_layer(Layer(2))
        xor.add_layer(Layer(2))
        xor.add_layer(Layer(1))

        xor.init_network()

        xor_patterns = [
            ([0, 0], [0]),
            ([0, 1], [1]),
            ([1, 0], [1]),
            ([1, 1], [0]),
        ]

        xor.train(xor_patterns)
        for inp, outp in xor_patterns:
            self.assertEqual(xor.run(inp), outp)
開發者ID:jozo-styrak,項目名稱:mlp,代碼行數:20,代碼來源:xor_test.py

示例5: main

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import add_layer [as 別名]
def main():
    xor = MLP()
    xor.add_layer(Layer(2))
    xor.add_layer(Layer(2))
    xor.add_layer(Layer(1))

    xor.init_network()

    xor.patterns = [
        ([0, 0], [0]),
        ([0, 1], [1]),
        ([1, 0], [1]),
        ([1, 1], [0]),
    ]

    print xor.train_target(xor.patterns)
    for inp, target in xor.patterns:
        tolerance = 0.1
        computed = xor.run(inp)
        error = abs(computed[0] - target[0])
        print 'input: %s target: %s, output: %s, error: %.4f' % (inp,
            target, computed, error)
開發者ID:sorki,項目名稱:mlp,代碼行數:24,代碼來源:xor.py

示例6: test_add_layer

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import add_layer [as 別名]
    def test_add_layer(self):
        a = MLP()
        with self.assertRaises(AssertionError):
            a.add_layer('')

        a.add_layer(Layer(1))
        a.add_layer(Layer(2))
        a.add_layer(Layer(3))
        self.assertEqual(len(a.layers), 3)
        for l in a.layers:
            self.assertIsInstance(l, Layer)
開發者ID:jozo-styrak,項目名稱:mlp,代碼行數:13,代碼來源:mlp_test.py

示例7: main

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import add_layer [as 別名]
def main():
    imres = MLP()
    num_points = 400
    imres.add_layer(Layer(num_points))
    imres.add_layer(Layer(20))
    imres.add_layer(Layer(10))

    imres.add_bias()
    imres.init_network()

    imres.step = 0.01
    imres.moment = imres.step / 10
    imres.verbose = True
    target_error = 0.01

    imres.patterns = []
    imres._patterns = []
    imres.test_patterns = []
    imres._test_patterns = []

    def norm(inp):
        def fn(x):
            return x/255
        return map(fn, inp)

    sample_dirs = set(os.listdir('font_samples'))
    train = set(random.sample(sample_dirs, len(sample_dirs)-1))
    test = sample_dirs - train
    for j in train:
        for i in range(0, 10):
            gim = Image.open('font_samples/%s/%d.png' % (j, i)).convert('L')
            imdata = norm(list(gim.getdata()))
            outvect = [0]*10
            outvect[i] = 1
            imres.patterns.append((imdata, outvect))
            imres._patterns.append((imdata, i, outvect))

    for j in test:
        for i in range(0, 10):
            gim = Image.open('font_samples/%s/%d.png' % (j, i)).convert('L')
            imdata = norm(list(gim.getdata()))
            outvect = [0]*10
            outvect[i] = 1
            imres.test_patterns.append((imdata, outvect))
            imres._test_patterns.append((imdata, i, outvect))


    print 'Training samples: %d (%s)' %  (len(imres.patterns),
        ' '.join(train))
    print 'Testing samples: %d (%s)' %  (len(imres.test_patterns),
        ' '.join(test))
    print 'Target error: %.4f' % target_error

    final_err, steps = imres.train_target(imres.patterns,
        target_error=target_error)

    print 'Training done in %d steps with final error of %.6f' % (steps,
        final_err)


    print '----- Detailed test output -----'
    total_tests = len(imres._test_patterns)
    total_fails = 0
    for inp, num, target in imres._test_patterns:
        computed = imres.run(inp)
        error = abs(computed[0] - target[0])
        computed = map(lambda x: round(x, 4), computed)
        maxn = computed[0]
        pos = 0
        for i in range(len(computed)):
            if computed[i] > maxn:
                maxn = computed[i]
                pos = i

        if num != pos:
            total_fails += 1
        print 'in: %d, out: %d' % (num, pos)
        print 'target: %s \noutput: %s' % (target, computed)

    print '-----'
    print 'Testing done - %d of %d samples classified incorrectly' % (
        total_fails, total_tests)
開發者ID:sorki,項目名稱:mlp,代碼行數:84,代碼來源:img.py


注:本文中的mlp.MLP.add_layer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。